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Abstract—Most commercial digital cameras use color filter
arrays to sample red, green, and blue colors according to a specific
pattern. At the location of each pixel only one color sample is
taken, and the values of the other colors must be interpolated using
neighboring samples. This color plane interpolation is known
as demosaicing it is one of the important tasks in a digital
camera pipeline. If demosaicing is not performed appropriately,
images suffer from highly visible color artifacts. In this paper
we present a new demosaicing technique that uses inter-channel
correlation effectively in an alternating-projections scheme. We
have compared this technique with six state-of-the-art demosaicing
techniques, and it outperforms all of them, both visually and Fig. 1. Bayer pattern.
in terms of mean square error.

Index Terms—Bayer pattern, color filter array, demosaicing, especially along edges. For natural images better performance
POCS. . . . . .

is possible than is achieved by these techniques because of
the high cross-correlation between color channels. The second

|. INTRODUCTION class of algorithms exploits this inter-channel correlation, and

INGLE-CHIP digital cameras use color filter arrays tcpaS S|gnk|]f|_catrr11tlly t;etter perfg}rr;:an(;e thgtp the flllrstsclass;.hOne

ample different spectral components, such as red, gregﬂfjrtc’ac ;n ISI c a.‘:’rsl #noo b uedranstlhloth]—[ I tmoctJh th

and blue. At the location of each pixel only one color samp He transition algorihms are based on the assumption that hue
es not change abruptly between neighboring pixel locations.

is taken, and the other colors must be interpolated fro first st h lorith int late the lumi
neighboring samples. This color plane interpolation is know > a first step, [these aigorninms nierpoiate the iuminance
green) channel, which is usually done using bilinear interpo-

asdemosaicingand it is one of the important tasks in a digita tion. The ch . h | d and bl timated
camera pipeline. If demosaicing is not performed appropriate ,|on. e chrominance channels (red and blue) are estimate

images suffer from highly-visible color artifacts. The mos om the bilinearly interpolated *red hue” (red-to-green ratio)

commonly used color pattern is the “Bayer” pattern [1]. Agnd “bllue Zue ébr:ue;to—gdr(ig:’] rartllo).” Tolbe more e)(lpllflt'(jtge
seen in Fig. 1, in a Bayer pattern, green samples are obtailt%t&rpo ate Ire L(;e and uhe ue-va uezaredrgtlj tip |e| y
on a quincunx lattice (checkerboard pattern), and red and b § green value to determine the missing red and blue values at

samples are obtained on rectangular lattices. The density of %h%articulf_;lr pixel_ location. Instead of_interpolating the hue, itis
red and blue samples is one-half that of the green ones. also possible to interpolate the logarithm of the hue [3], [4].

Demosaicing methods can be grouped into two distin_ctAnOther approach that exploits inter-channel correlation

classes. The first class applies well-known interpolatidﬁ edge-directed interpolatiori5]{9]. The main difference

techniques to each color channel separately. These techni %tgveelngms a;f)pt:]oach and thhe Drevllqus Onle is tdhat;[ thedb|l|?ear
include nearest-neighbor replication, bilinear interpolation, erpolation ot the green channel 1S replaced by adaptive

and cubic spline interpolation. Although these single—chanr{gferpmat'on to prevent interpolating across edges. In [3],

algorithms can provide satisfactory results in smooth regioﬂrsSt'order horizontal and vertical gradients are computed

of an image, they usually fail in high-frequency regionﬂt gach MISSIng green location on the Bayer patt.ern..lf the
orizontal gradient is greater and the vertical gradient is less

than a predetermined threshold, suggesting a possible edge
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Fig. 2. Images used in the experiments. (These images are refelradges 1to Image 20in the paper, enumerated from left-to-right, and top-to-bottom.).

TABLE |
INTER-CHANNEL CORRELATION IN DIFFERENT SUBBANDS
Red/Green Corr. Coef. Blue/Green Corr. Coef.
Image no LL LH HL HH LL LH HL HH
1 0.8376 | 0.9959 | 0.9903 | 0.9866 0.9911 | 0.9970 | 0.9940 | 0.9838
2 0.4792 | 0.9275 | 0.9346 | 0.9414 0.9723 | 0.9891 | 0.9889 | 0.9431
3 0.8854 | 0.9276 | 0.9899 | 0.9822 || 0.8917 | 0.9754 | 0.9856 | 0.9682
4 0.9765 | 0.9963 | 0.9926 | 0.9794 || 0.9924 | 0.9917 | 0.9810 | 0.9605
[ 0.8234 | 0.9789 | 0.9800 | 0.9483 0.9045 | 0.9717 | 0.9761 | 0.9391
6 0.9629 | 0.9947 | 0.9937 | 0.9822 || 0.9726 | 0.9932 | 0.9931 | 0.9770
7 0.9462 | 0.9906 | 0.9861 | 0.9404 0.8464 | 0.9834 | 0.9776 | 0.92562
8 0.9540 | 0.9867 | 0.9841 | 0.9458 || 0.9698 | 0.9807 | 0.9706 | 0.9224
9 0.8083 | 0.9863 | 0.9870 | 0.9768 0.9730 | 0.9942 | 0.9933 | 0.9766
10 0.9112 | 0.9899 | 0.97569 | 0.9316 || 0.9670 | 0.9878 | 0.9784 | 0.9120
11 0.9793 | 0.9968 | 0.9953 | 0.9932 |{ 0.9603 | 0.98956 | 0.9854 | 0.9805
12 0.8595 | 0.9548 | 0.9445 | 0.9421 || 0.9882 | 0.9809 | 0.9841 | 0.9506
13 0.9838 | 0.9962 | 0.9895 | 0.9599 || 0.9492 | 0.9943 | 0.9863 | 0.9471
14 0.9852 | 0.9864 | 0.9831 | 0.9519 || 0.9778 | 0.9811 | 0.9784 | 0.9418
15 0.9120 | 0.9832 | 0.9812 | 0.9771 || 0.8113 | 0.9746 | 0.9630 [ 0.9700
16 0.96562 | 0.9961 | 0.9911 | 0.9562 || 0.9078 | 0.9923 | 0.9919 | 0.9578
17 0.9966 | 0.9873 | 0.9913 | 0.9588 |[ 0.9767 | 0.9594 | 0.9773 | 0.9177
18 0.8850 [ 0.9926 | 0.9901 | 0.9771 0.9094 | 0.9871 | 0.9838 | 0.9614
19 0.8660 | 0.9542 | 0.9448 | 0.9352 |[ 0.8698 | 0.9693 | 0.9737 | 0.9598
20 0.9765 | 0.9809 | 0.9741 | 0.9460 || 0.9654 | 0.9696 | 0.9629 | 0.9259

are less than or greater than the threshold), the green valuedts are interpolated as for the smooth hue transition approach,
obtained by averaging its four neighbors. Interpolation of tHaut this time the color differences are interpolated instead of the
red and blue channels can be done by either interpolating codofor ratios.

ratios (as in smooth hue transition) or by interpolating the color Instead of interpolating color differences or color ratios,
differences instead of the color ratios. it is also possible to use the inter-channel correlation as a

A different version of this approach was proposed by Laroclerrection term in the interpolation [7]-[9]. In [9], Hamilton

and Prescott [6]. There the chrominance channels are usedaind Adams used second-order derivatives of the chrominance
stead of the luminance channel to determine the gradients samples as correction terms in the green channel interpolation.
order to determine the horizontal and vertical gradients at a bllie determine the gradient at a blue (red) sample location, the
(red) sample, second-order derivatives of blue (red) values asxond-order derivative of blue (red) pixels values are added to
computed inthe corresponding direction. The red and blue chalme first-order derivative of the green values. The second-order
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derivative of the blue (red) pixels is also added to the average
of the green values in the minimum gradient direction. The red
and blue channels are interpolated similarly with second-order
green derivatives used as the correction terms. :
Kimmel later combined themooth hue transitioandedge- // \
directed interpolationapproaches in an iterative scheme [10]. f .
In his algorithm, first-order derivatives of the green channel e r f—-=r f
information are used to compute edge indicators in eight ll.
possible directions. Hue values are interpolated using these \\ /
edge indicators, and missing color intensities are determined
according to the interpolated hues. The color channels are
then updated iteratively to obey the color-ratio rule. He also
proposed an inverse diffusion process to enhance the images
further. @
There are also more complicated demosaicing approaches. In !
[11], Changet al. applied interpolation using a threshold-based
variable number of gradients. In that approach, a set of gradients / "
is computed in the % 5 neighborhood of the pixel under con- 1
sideration. A threshold is determined for those gradients, and
the missing value is computed using the pixels corresponding i B o T,
to the gradients that pass the threshold. A similar algorithm was / \
proposed in [12], where the green channel is used to determine <
the patternat a particular pixel, and then a missing red (blue) X
pixel value is estimated as a weighted average of the neigh- Sl T il
boring pixels according to the pattern. In addition, there are pat-
tern recognition [13], restoration-based [14]-[16], and sampling L
theory point of view [17], [18] approaches. "x_
In this paper, we present a very effective means of using
inter-channel correlation in demosaicing. The algorithm defines
constraint sets based on the observed color samples and prior (b)
knowledge about the correlation between the channels. It re- f
constructs the color channels by projecting the initial estimates
onto these constraint sets. We have compared our algorithm with
the various other techniques that we have outlined above, and it
outperforms them both visually and in terms of its mean square
error. Section Il presents the motivation and details of this al-
gorithm. Its experimental performance and comparisons with
other techniques are given in Section lll. A complexity analysis
is provided in Section IV.

i

Il. DEMOSAICING USING ALTERNATING PROJECTIONS

There are two observations that are important for the demo-
saicing problem. The first is that for natural images there is
a high correlation between the red, green, and blue channels.
All three channels are very likely to have the same texture and
edge locations. The second observation is that digital cameras
use a color filter array (CFA) in which the luminance (green) (©
channel is Sampled ata h|gher rate than the chrominance ('5@3 CFA sampling of the images. (a) Frequency support of an image. (b)
and blue) channels. Therefore, the green channel is less lik8pgctrum of the sampled green channel. (c) Spectrum of the sampled red and
to be aliased, and details are preserved better in the gr8&f§ channels.
channel than in the red and blue channels. In demosaicing, it
is the interpolation of the red and blue channels that is tlagorithms, inter-channel correlation has not been used effec-
limiting factor in performance. Color artifacts, which becomévely to retrieve the aliased high-frequency information in the
severe in high-frequency regions such as edges, are causeband blue channels. This paper proposes a new demosaicing
primarily by aliasing in the red and blue channels. Althougalgorithm that does remove aliasing in these channels using an
this fact is acknowledged by the authors of most demosaiciatiernating-projections scheme. It defines constraint sets using
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TABLE I
CORRELATION BETWEEN ORIGINAL IMAGES AND BILINEARLY INTERPOLATED OBSERVATIONS IN DIFFERENT SUBBANDS

Image Red channel Green channel Blue channel

no LL LH HL HH LL LH HL HH LL LH HL HH

1 0.9721 | 0.5936 | 0.6416 | 0.3029 || 0.9979 | 0.8968 | 0.8078 | 0.3012 || 0.9789 | 0.5956 | 0.5266 | 0.3052
2 0.9923 | 0.7130 [ 0.5974 | 0.2597 | 0.9982 | 0.8763 | 0.8496 | 0.3532 || 0.9871 | 0.6752 § 0.6377 | 0.2639
3 0.9912 | 0.6094 | 0.6326 | 0.3393 || 0.9983 | 0.8680 | 0.8497 | 0.3681 || 0.9893 | 0.6460 | 0.5537 | 0.3355
4 0.9954 | 0.5888 [ 0.5994 | 0.3023 || 0.9993 | 0.9296 | 0.6762 | 0.3124 || 0.9918 | 0.6196 | 0.5511 | 0.3023
5 0.9973 | 0.6928 | 0.6999 { 0.2726 || 0.9993 | 0.9185 | 0.87561 [ 0.3072 || 0.9969 | 0.6962 | 0.6776 | 0.2622
[ 0.9850 | 0.5750 | 0.5722 | 0.2827 || 0.9986 | 0.79563 | 0.8936 [ 0.2528 || 0.9807 | 0.6009 | 0.5391 | 0.2844
7 0.9960 | 0.6649 | 0.6641 | 0.2510 |[ 0.9993 | 0.9008 | 0.8692 [ 0.2609 || 0.9940 | 0.6814 | 0.6285 | 0.2502
8 0.9965 | 0.6663 | 0.6808 | 0.2938 || 0.9994 | 0.9006 | 0.8397 | 0.32056 || 0.9946 | 0.6807 [ 0.6228 | 0.2838
9 0.9915 | 0.6185 | 0.5991 | 0.2958 || 0.9990 | 0.8831 | 0.8069 | 0.3378 || 0.9932 | 0.6206 | 0.5745 | 0.2923
10 0.9963 | 0.6407 | 0.7349 | 0.2661 |[ 0.9997 | 0.9170 | 0.8235 | 0.2757 || 0.9970 | 0.6629 [ 0.6223 | 0.2358
11 0.9842 | 0.5647 | 0.5367 | 0.3013 || 0.9968 | 0.8826 | 0.7177 | 0.4017 || 0.9860 | 0.5727 | 0.4999 | 0.3017
12 0.9986 | 0.6747 | 0.6726 | 0.2847 || 0.9999 | 0.7869 | 0.9066 | 0.3259 || 0.9987 | 0.6691 { 0.5136 | 0.2716
13 0.9955 | 0.6243 | 0.7102 | 0.2694 || 0.9995 | 0.9431 | 0.6533 | 0.3163 || 0.9944 [ 0.6029 | 0.6623 | 0.2560
14 0.9975 | 0.6695 | 0.6711 | 0.2810 || 0.9995 | 0.8598 | 0.8677 | 0.3646 || 0.9972 | 0.6633 | 0.5752 | 0.2806
15 0.9932 | 0.5781 | 0.6146 | 0.2920 || 0.9972 | 0.8427 | 0.8111 | 0.3533 || 0.9812 | 0.5872 | 0.5363 | 0.2839
16 0.9924 | 0.6597 | 0.5801 | 0.2880 || 0.9989 | 0.8950 | 0.8288 | 0.2445 || 0.9906 | 0.6410 | 0.5602 | 0.2788
17 0.9989 | 0.6211 | 0.7646 | 0.2976 || 0.9998 | 0.8261 | 0.8450 | 0.3070 || 0.9992 | 0.6944 | 0.7254 | 0.2756
18 0.9910 | 0.6174 | 0.6133 [ 0.2996 || 0.9987 | 0.9166 | 0.7568 | 0.32656 || 0.9933 | 0.6242 [ 0.6232 | 0.2967
19 0.9956 | 0.7095 | 0.6023 | 0.2841 || 0.9990 | 0.8524 | 0.8714 | 0.3234 || 0.9953 | 0.6641 | 0.5696 | 0.2872
20 0.9936 | 0.6468 | 0.6387 [ 0.2993 || 0.9986 | 0.8750 | 0.8047 | 0.3658 || 0.9916 | 0.6306 | 0.6041 | 0.32564

both the inter-channel correlation and the observed data, amdere (n1,7,) are integers denoting the spatial coordinates,
reconstructs the red and blue channels by projecting initie{n,,n2) andy(ny,ns) are the samples of two different color
estimates onto these constraint sets. channels within a subband, and and ., are the means of
Section 1I-A quantifies the degree of cross-correlation(n,,n;) andy(ny,ns), respectively. The summation is done
between the color channels. Section II-B illustrates the aliasinger all possiblgn;,n») in a subband. The correlation coeffi-
that results from CFA sampling and motivates a detail-retrievingents between the red and green, and blue and green channels
interpolation scheme. Section II-C derives the constraint seffe tabulated in Table I. As seen in that table, the correlation co-
used by the proposed demosaicing scheme. Section lleBicients for the high-frequency subbandsH, H L, H H) are
presents the details of the implementation and Section litgger than 0.9 for all images, and the highest correlation co-

describes some extensions. efficient for a particular image is among these subbands. The
low-frequency subbands /. are also highly correlated (their
A. Inter-Channel Correlation correlation coefficients are greater than 0.8 for most of the im-

_ ) ages.), butthey are not as highly correlated as the high frequency
In natural images the color channels are highly mutually,pbands.

correlated. Since all three channels are very likely to have theggction 11-B examines the effects of CFA sampling on these

same edge content, we expect this inter-channel correlatigihhands. In particular, we show that the high-frequency sub-

to be even higher when it is measured between the high-figy4s of the red and blue channels are the most affected.
guency components. (The reason for investigating correlation

in the high-frequency components will become evident i
Section 1I-B.) In order to illustrate this we decomposed th
three color channels of 20 natural images (Fig. 2) into sub-As seenin Fig. 1, in a Bayer pattern the green channel, sam-
bands. We used two-dimensional separable filters constructed with a quincunx lattice, is less likely to be aliased than the
from a low-pass filteho = [1 2 1]/4) and a high-pass red and blue channels, which are sampled with less dense rect-
filter (h; = [1 -2 1]/4) to decompose each image intcangular lattices. This can easily be illustrated in the frequency
its four subbands: (LL) both rows and columns are low-pasl®main. Fig. 3(a) depicts the Fourier spectrum of an image with
filtered, (LH) rows are low-pass filtered, columns are high-pags. being the maximum observable frequency. When this image
filtered, (HL) rows are high-pass filtered, columns are low-pass captured with a digital camera, the color planes are sampled
filtered, (HH) both rows and columns are high-pass filtereéccording to a CFA, which is generally the Bayer pattern. As
The inter-channel correlation coefficients for each of these foillustrated in Fig. 3(b) and (c), while there is no aliasing in the
subbands was computed using the formula green channel, the red and blue channels are aliased.
This can also be confirmed for the images in Fig. 2. In
S (@(na,n2) — pa) (y(n1,ma) — py) Table I, the correlation coefficients between the original
o (n1,m2) channels and the bilinearly-interpolated (from the CFA sam-
=Y 2 2 ples) channels are displayed for all subbands. Two important
2, (@lnn2) =) 2 (i nz)=py) things can be observed in that table. First, the high-frequency
(1) (LH, HL, HH) subbands are degraded the most. Second this

%' Color Plane Sampling

(n1,m2) (n1,m2)
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degradation is more severe in the red and blue channels tha -Hl(z)
the green channel, especially in thé/ and H L. subbands.
. R.G,B

In Section 1I-A, we showed that the color channels at
highly mutually correlated, especially in the high-frequenc
subbands. In this section, we illustrated the fact that tl
high-frequency subbands of the red and blue channels aic
affected the most in CFA sampling. These two observationSeig 4. Analysis and synthesis filterbanks for one-level decomposition.
imply that the high-frequency information of the green channel
can be used to help estimate the high-frequency compone~*74 : : : : , , .
of the red and blue channels. One way to achieve this is w 7 ed cpanne.
a set-theoretic reconstruction. 1204

(a) Analysis filterbank (b) Synthesis filterbank

C. Constraint Sets 100}

Set-theoretic reconstruction techniques produce soluticg sl
that are consistent with the information arising from observe §
data or prior knowledge about the solution. Each piece <§
information is associated with a constraint set in the soluti(g
space, and the intersection of these sets represents the s 4|
of acceptable solutions [19]. For the demosaicing problel
we define two types of constraint sets, one coming from tt 2
observed data, and the other based on the prior knowledge

. . & 8 3
the mter—channel cprrelatlon. 0] s 5 ; : p - . 9
The first constraint set comes from the observed color sa fteration no
ples. The interpolated color channels must be consistent with
the color samples captured by the digital camera. We denote Fig. 5. Convergence for one-level decomposition.

O(n1,n2) as this observed data, which has red, green, and blue
samples placed according to the CFA uged. n») are ordered

pairs of integers denoting the pixel locations. By definitg, 6.8
Ag, andA g as the set of pixel location§g 1, n2), that have the
samples of red, green, and blue channels, respectively, we
write the “observation” constraint set as follows:

(a) Analysis filterbank (b) Synthesis filterbank
C, ={S(n1,n2): S(n1,n2) = O(ny,ns) Fig. 6. Analysis and synthesis filterbanks for two-level decomposition.
V(n17n2)6A57 S:R7G7B} (2)
140 « . :
¢>- Red channel
wheresS is a generic symbol for the interpolated color channel , & Blue channel |

which can beR for the red channelz for the green channel,
and B for the blue channel.

The second constraint set is a result of the Sections II-A a
B. In Section II-A, it was shown that color channels have ve|§
similar detail (high-frequency) subbands. This informatio§
would not be enough to define constraint sets if all channels I(f§
the same amount of information in sampling. However, Se§
tion 11-B pointed out that the red and blue channels lose ma
information (details) than the green channel when captur
with a color filter array. Therefore, we can define constraint se

on the red and blue channels that force their high-frequen 4 & B 3 (o] 3 B
components to be similar to the high-frequency components 0] 5 5 ; s . 5 5 o
the green channel. This proves to be a very effective constre iteration no

set, since the main source of color artifacts in a demosaiced

image is the inconsistency of the channels, especially, along Fig. 7. Convergence for two-level decomposition.

the edges.

Before formulating this constraint set, we need to provideerforms an undecimated wavelet transform, with(z) and
some information about the filter bank structure that is usdd, (z) denoting low-pass and high-pass filters, respectively.
to decompose the channels. Referring to Fig. 4, the filter bafilkese analysis filtersHo(z) and H1(z)) constitute a perfect
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Interpolate Green

Fig. 8. Fine tuning of green channel is done from observed red and blue samples.

reconstruction filter bank with the synthesis filtei(z) and tion operators corresponding to the “observation” and “detail”

G1(z). The perfect reconstruction condition can be written aonstraint sets given in the Section 1I-C. Convergence issues and
enhancement of the green channel are then addressed. Finally,

Ho(%)Go(z) + Hi(2)G1(2) = 1. ) the complete algorithm is presented.
1) Projection Operators:The first constraint set that is used

in the reconstruction is the “observation” constraint set given in

62) Referring to that equation, we can write the projectitp]

onto the “observation” constraint set as follows:

By denotingho(-) andh; () as the impulse responsesi(z)
and H;(z), respectively, we can write the four subbands of
two-dimensional signa$(n,n2) as follows:

(WlS) (711, 712) =h0(n1) * [ho(ﬂg) * S(?’Ll, 712)] (4) O A
(W2S) (n1,m2) =h(mn) * [ho(ns) = S(n1.n2)]  (5) Py[S(n1,n2)] = { (n1,ma), (ma,m2) € As } ©)
) ) S(n1,ns), otherwise
(WsS) (n1,n2) =ho(n1) * [h1(n2) * S(n1,n2)] ~ (6)
OW4S) (n1,n2) =hy(ny) * [k (n2) + S(n1,n2)]  (7) WhereS is the color channel, which can be the rfd), green
(@), or blue(B) channel.

where (W, S) is the approximation subband, ar@V.S), The other constraint set is the “detail” constraint set given in
(WsS), (W,S) are the horizontal, vertical, and diagonal deta(l8). In order to write the projection onto this constraint set, we
subbands, respectively. first need to define the filtering operations in the synthesis stage

Now we can define the “detail” constraint 38, that forces of the filter bank. Lettinggo(-) and g;(-) denote the impulse
the details (high-frequency components) of the red and bluesponses corresponding@y( =) andGy (=), we can write the
channels to be similar to the details of the green channel fasir filtering operations on a two-dimensional sigi&n; , n2)
shown in (8) at the bottom of the page, whéfén;,ns) is a as follows:
positive threshold that quantifies the “closeness” of the detalil

subbands to each other. If the color channels are highly corre- (14, X) (n1,n2) =go(n1) * [go(n2) * X(n1,n2)] (10)
lated, then the threshold should be small; if the correlationisnot ¢4, X) (n;, ny) =g1 (n1) * [go(n2) * X (n1,n2)]  (11)
high, then the threshold should be larger. Althodg , n2) (UsX) (1, m2) =go(n1) * [g1(na) * X(n1,n)]  (12)
is a function of image coordinates in general, it is also pos- 8 L 12) =golfin) = lg1inz L2

sible to use a predetermined fixed value for it. One choice is (UsX) (n1,n2) =g1(n1) * [g1(n2) * X(n1,n2)]  (13)

to setT'(ny,n2) to zero for all(ny,n2), which is result of the

high-correlation assumption. Later in the paper, we also discly¥8ereit1, U, Us, U, are the synthesis filtering operators. As
how to choose a nonuniform threshold. stated earlier, these form a perfect reconstruction filter bank with

the analysis filtering operatodd/’;, Wo, Wi, andW,
D. Alternating Projections Algorithm

This section presents an alternating-projections algorithm 671, n2) = Uy W15) (n1, n2) + Uz W25) (n1, n2)
reconstruct the red and blue channels. We first derive the projec- +Us W3S) (ny,n2) +Us WaS) (n1,n2). (14)

C, = S(n17n2): |(Wks) (n17n2) - (WkG) (n17n2)| < T(n17n2) (8)
4= ¥ (ny,ng), fork =2,3,4andS = R, B
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TABLE Il
MEAN SQUARE ERROR COMPARISON OFDIFFERENT METHODS

Mean square error for different methods
Image | Channel Bilinear | Method in | Method in | Method in | Method in | Method in | Method in | Proposed | Proposed
no interp. [2] [6] [5] [9] [11] [10] (1-L) (2-L)
Red 187.9089 92.8196 53.5751 84,3346 51.9910 71.9113 28.6331 11,1837 11.9266
1 Green 72.1162 72.1162 46.3605 67.2416 21.4822 16.7100 20.0978 7.1227 7.1227
Blue 205.0097 94.5357 52.9721 83.4813 53.6638 82.8315 32.1395 11.6294 10.0408
Red 41.7608 51.5908 17.7685 76.5047 16.6541 17.9117 £9.2494 8.0177 13.0637
2 Green 15.2170 15.2170 11.8072 15.7971 6.2777 4.7003 9.1604 8.7961 8.7961
Blue 38.6815 20.9121 13.4500 23.5842 12,1303 13.2157 12.9478 7.7456 7.7202
Red 169.8735 96.8888 48.4138 56.1798 42.2292 37.5406 57.9284 10.4808 14.8410
3 Green 76.3730 75.3730 50.7147 67.0559 16.2820 17.8096 73.2381 8.6595 8.6695
Blue 169.5238 79.6867 51.0465 95.3246 42.7336 41.1926 32.6129 17.6656 23.7133
Red 142,.3374 66.2179 36.4665 60.6662 37.4170 50.8664 21.4296 8.9276 8.2246
4 Green 61.6217 51.6217 32.5744 51.8792 15.5885 12.4186 16.2496 5.6919 5.6919
Blue 136.0159 69.65935 39.9068 63.5090 38.0842 48,8259 29.3244 11.2769 11.1623
Red 36.1627 17.8798 9.7105 16.8978 9.8012 9.0955 12.5014 3.6303 6.2425
5 Green 14.7244 14.7244 9.3786 12,3191 3.8816 3.9935 29.4243 3.6542 3.6542
Blue 36.9836 18.7047 10.8722 22.8823 10.5688 9.1739 11,5855 6.6624 9.3744
Red 361.1668 157.4050 71.2011 116.3806 84,7959 164.4306 40.5317 18.4496 19.9498
6 Green 117.6322 117.8322 58.9497 87.1483 28.4313 25,5357 26.8526 11.3828 11.3828
Blue 365.6230 162.0675 73.1896 112.6440 86.2732 169.9609 44.7260 22,8969 23.1047
Red 46.2916 21.4934 11.4020 16.7672 11.6370 14.3500 7.38577 3.5461 4.3098
7 Green 17.8777 17.5777 10.2293 14.3326 4.4693 4.2732 7.41351 3.3418 3.3418
Blue 45,6932 21.7906 12.0721 18.6969 11.8510 15.4414 7.6779 6.7670 9.4430
Red 46.0860 23.4119 12.8790 19.7443 11.7921 12.3641 8.36021 3.8132 4.8498
8 Green 19.4041 19.4041 11.9138 16.3728 4.6615 4.0277 4.6207 3.6606 3.6606
Blue 49.2973 23.0224 14.6964 20.0613 13.4102 13.7024 7.66359 5.6762 6.6428
Red 97.2040 50.65133 29.8320 63.8813 28.6785 30.6635 23.22886 8.1776 10.2030
9 Green 38.2468 38.2468 27.0450 37.7190 12.0979 9.9917 22.5401 5.8512 5.8512
Blue 93.8299 47.5779 29.2492 51.1127 26.7295 28.6749 20.8198 8.9623 8.9076
Red 40.9047 22.1820 10.4737 16.9456 10.8859 14.5784 7.15264 3.3880 4.7873
10 Green 16.0817 15.0617 8.1748 12.8545 3.6963 3.4156 3.86487 3.1580 3.1580
Blue 44.3114 20.7030 10.4823 15.6438 11.1874 15.5967 7.31925 4.3254 4.8950
Red 317.2656 144.7688 124.4631 170.9637 107.9393 80.2820 65.6570 23.3247 17.5040
11 Green 144.0958 144.0955 121.6625 163.6400 54.1038 39.2386 99.1861 16.0249 15.0249
Blue 324.3623 167.3950 135.8525 201.6013 115.3881 88.3770 91.6544 31.0839 28.2410
Red 54.0245 65.5710 22,9565 67.4766 21.3817 22.0660 43.5004 8.4860 13.6237
12 Green 21.8710 21.8710 15.1751 18.9863 7.2481 5.5038 7.61045 8.1075 8.1075
Blue 62.3868 26.2786 17.5949 24,3682 18.1836 22.4072 9.02726 7.8151 8.0626
Red 60.1798 29.4225 16.1500 28.2998 16.5090 23.0927 9.61217 3.9657 3.5306
13 Green 21.7635 21.7635 13.5637 22.6938 6.8096 5.6587 8.16223 3.0419 3.0419
Blue 60.6834 30.7311 16.7104 28.0346 16.6368 22.5951 13.2754 5.2673 5.3687
Red 46.7877 23.1556 16.1704 34.7360 14.0212 11.5421 10,2667 4.6324 4.4979
14 Green 22.7296 22,7286 17.442% 22.1423 7.2229 6.3324 17.2643 3.7388 3.7388
Blue 64.5740 26.9042 19,2051 29.9782 17.3880 14.0801 14.4194 7.0188 7.4764
Red 122.7638 60.7294 46.9089 75.6976 40.2998 30.7597 30.8517 11.8054 12.9477
15 Green 60.4622 60.4622 47.8300 64.2247 21.0464 16.4279 51.0574 10.1858 10.1858
Blue 130.1688 69.5588 54.55623 92.7083 47.4073 38.2464 38.8936 17.5744 19.8079
Red 128.8738 66.5123 22.7103 37.2010 28.2224 63.8097 13.4602 6.4493 6.6832
16 Green 44,3272 44,3272 20.6299 29.5803 9.2269 8.8671 14.9778 5.2919 5.2919
Blue 124.8694 62.6212 23.8686 45.8549 27.3332 64.5105 22.1372 8.6431 9.7768
Red 61.4497 33.4027 15.6363 21.9867 16.0100 12.9693 8.86245 4.9608 5.2015
17 Green 30.3986 30.3988 15.3200 19.8501 6.8153 5.3587 16.1647 7.1316 7.1316
Blue 56.9281 30.2105 19.4766 30.4042 18.6600 16.5536 13.3502 9.2426 11.0392
Red 111.0566 51.8098 34.6219 55.6550 32.4667 33.7863 15.7318 8.0718 7.5613
18 Green 45.4564 45.4564 32.4018 46.3240 14.6395 10.8146 16.4300 6.2735 6.2735
Blue 113.3916 57.0697 38.2285 57.9721 34.6850 38.6662 24,5898 11.3049 11.7922
Red 65.9768 35.4940 24.8584 38.9006 22,2870 23.2653 16.1701 13.4359 15.8164
19 Green 30.1987 30.1967 21.95672 29.6137 10.3009 9.3900 11.3889 8.3866 8.3866
Blue 76.1882 38.1415 26.2763 37.0819 25.0622 32.0137 20.0780 14,2484 16.9749
Red 149.2869 70.5418 61.5271 83.2984 49.3905 40.4266 29.0343 25.7426 25.8744
20 Green 76.3340 76.3340 64.1117 83.3698 28.5436 22.3596 26.1093 17.7896 17.7896
Blue 192.4042 99.6933 86.4603 119.5614 78.4803 64.6248 50.7653 32.8394 32.1965

Now, we can write the projectiod’;[S(n1,n2)] of a color Otherwise, it has to be changed so that the resigdiy@l; , n2)
channel S(ni,n2) onto the “detail” constraint set’; as is lessT(ni,n2) in magnitude. This projection operator can
follows. Referring to (8), we defingy,.(n1,n2) as the residual be written as

rr(ni, na) = WiS) (n1, n2) — (WiG) (n1,n2). (15)

4
. . . Py[s = ! M
When this residual is less than the thresh@i@h,,n,) in a[5(n1,n2)l = Uy (W15) (nl’n2)+kz=:2uk (Wi'S) (1, 72)

magnitude, the subband val(@®/;..S) (n1,7n2) is not changed. (16)
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where (see (17) at the bottom of the page). The “observation”2) Use the observed samples of the blue channel to form a
projection ensures that the interpolated channels are consistent downsampled version of the blue channel. Note that all
with the observed data; the “detail” projection reconstructs the  pixels of this downsampled image are observed data.
high-frequency information of the red and blue channels, and 3) Use the interpolated green samples at the corresponding
imposes edge consistency between the channels. By alternately (blue) locations to form a downsampled version of the
applying these two projections onto the initial red and blue  green channel. Note that the pixels of this downsampled

channel estimates, we are able to enhance these channels. image are all interpolated values.
2) Convergence:The Constraint sets givenin (2) and (8) are 4) Decompose these blue and green downsampled channels
convex. (The proofs are provided in the Appendix.) Therefore, into their subbands, as was done in Section II-C.

an initial estimate converges to a solution in the feasibility set 5) Replace the high-frequency. &, HL, HH) subbands

by projecting it onto these constraint sets iteratively. We have  of the green channel with those of the blue channel. (Note

also verified it experimentally. Using the proposed algorithm, that this corresponds to setting the threshblgh, , no)

we updated the chrominance (red and blue) channels iteratively to zero.)

from the initial estimates. In each iteration, the chrominance 6) Reconstruct the downsampled green channel, and insert

channels are updated by the “detail” projection, followed by the  the pixels in their corresponding locations in the initial

“observation” projection. A typical convergence plot is given in green channel estimate.

Fig. 5. As seen in that figure, the mean square error of the red7) Repeat the same procedure for the pixels at the red

and blue channels converges in about five iterations. (That plot samples.

is for Image 16in Fig. 2. The initial estimates for the red andwith this scheme, significant improvement over bilinear in-

blue channels were obtained by bilinear interpolation. The gregspolation and other adaptive algorithms can be achieved in

channel was interpolated using a method that will be explaingte green channel. We used the edge-directed interpolation

in Section 11-D3.) procedure proposed in [9] to obtain the initial green channel
Instead of performing a one-level subband decompositiongiétimates. The results are discussed in Section .

is also possible to decompose the signals further. As done withd) Complete Algorithm:The pseudo-code of the complete

undecimated wavelet transforms, the low-pgs$) subbands algorithm is as follows.

can be decomposed by using filtef(~?), and Hi(=?). 1) Initial interpolation: Interpolate the red, green, and blue

This filterbank structure is shown in Fig. 6 for a two-level channels to obtain initial estimates. Bilinear or edge-

decomposition. Convergence for the two-level decomposition,  girected interpolation algorithms can be used for this

which is illustrated in Fig. 7 is faster than for the one-level initial interpolation.

decomposition. 2) Update the green channel:Update the green channel
3) Updating the Green ChannelThe algorithm we have using the scheme explained in Section I1-D3.

discussed so far reconstructs the high-frequency informationgy “petail” projection: Decompose all three channels with
of the red and blue channels. The performance of this re- 4 filter bank. At each level of decomposition, there will
construction directly depends on the accuracy of the green pe four subbands. Update the detail (high-frequency)
channel interpolation. The edge-directed interpolation methods  gyppands of the red and blue channels using (17) and
discussed in Section | provide satisfactory performance in gen-  reconstruct these channels using (16).
eral, but it is still possible to obtain better results using a 4y “Opservation” projection: Compare the samples of the
method similar to the red-blue interpolation we have pre- — reconstructed red and blue channels with the original
sented. Referring to Fig. 8, we can update the green channel (gpserved) samples. Insert the observed samples into
as follows. the reconstructed channels at their corresponding pixel
1) Interpolate the green channel to get an initial estimate.  locations as given in (9).
Either bilinear or edge-directed interpolation methods 5) Iteration: Go to Step 3, and repeat the procedure until a
can be used for this step. stopping criterion is achieved.

WiG +T) (n1,n2); ri(n1,n2) > T(ny,n2)
(Wi'S) (n1,m2) = (WiS) (n1,n2); |ri(ne, n2)| < T(ni,n2) a7
WG —T) (n1,n2); re{ni,ne) < —T(ny,ne)

) (S(i,4) = ns) (G(i, 5) — na)
HI)ENG ng)
> (S(i,4) —nps)’ S (Gij) - pe)

(4,5)E Ny mo) (5:)EN(ny mo)

Kgs(ni,no) =

(18)
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{b) Method in [2].

{c) Method in [3]. {d) Method in [6].

Fig. 9. Comparison of the methods flonage 4 (a) Crop from the originaimage 4 (b) Method in [2]. (c) Method in [5]. (d) Method in [6].

E. Extensions to the Algorithm amount ofthe correlation between the channels thatis used
by the algorithm. If the channels are totally uncorrelated
the threshold should be large enough to turn the “detail”
projection into an identity projection. If the channels are
1) Correlation surface: The threshold'(ny,n2) in the highly correlated the threshold should be close to zero.
“detail” projection provides a way of controlling the One problem, however, is that the correlation between

Itis also possible to extend the proposed algorithm in several
different ways.
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(2} Method in [11].

{h) Proposed (1-L, & iterations).

Fig. 9. (Continued) Comparison of the methods famage 4 (e) Method in [9]. (f) Method in [10]. (g) Method in [11]. (h) Proposed (1-L, 8 iterations).

the channels is not necessarily uniform; there may be
both high-correlation and low-correlation regions within
the same image. This can be overcome by estimating the
correlation locally and adjusting the thresh@ic, , n2)
accordingly. One way to compute a local correlation
surface is to move a small window over the color

planes, compute the correlation between them, and assign
a correlation coefficient to the pixel at the center of
the window. By mapping the values on the correlation
surface to the thresholfi(n,, n2), the algorithm can be
made more effective for images that have nonuniform
correlation surfaces.
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() Method in [5].

1007

(b} Methed in [2].

{d) Method in [6].

Fig. 10. Comparison of the methods fanage 6 (a) Crop from the origindimage 6 (b) Method in [2]. (c) Method in [5]. (d) Method in [6].

Denoting Ks(n1,n2) as the correlation surface be-
tween channeb—red or blue—and the green channel,
the proposed method computes the correlation surface
as shown in (18) at the bottom of page 1004, where
N(n, n,) IS @ neighborhood about locatign,, ), and
s and ug are the means of channetsand G in that
neighborhood. One choice fd¥,, ,,) might be a 5« 5

window. This formula will give a correlation surface with
values ranging between zero and one. This correlation
surface is then passed to a function that will return a
large value wher{s(n,7n2) is small and a small value
whenKs(n1,n2) is large. The choice of such a function
requires further research and experimentation, and we
leave it as an open problem.
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(g Method i [11].

() Method in [10].

(h) Proposed (1-L, 8 iterations).

Fig. 10. (Continued) Comparison of the methods fimage 6 (e) Method in [9]. (f) Method in [10]. (g) Method in [11]. (h) Proposed (1-L, 8 iterations).

2) Smoothness projection:Other constraint sets can be in-
cluded in the algorithm easily. One such constraint is
a smoothness constraint. Smooth hue (color ratio) and
smooth color difference transitions are the basis of some
demosaicing algorithmsthatwe have already cited [2]—[4].

An easy way to include a smoothness projection is to in-
terpolate the color ratio or difference to get an estimated
color value at a certain locatiofn;,n2), and constrain
the resultsto lie in a certain neighborhood of that estimate.
This is also an open area that should be investigated.
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ic) Method in [5]. {d) Method in [4].

Fig. 11. Comparison of the methods fanage 16 (a) Crop from the origindimage 16 (b) Method in [2]. (c) Method in [5]. (d) Method in [6].

lll. EXPERIMENTAL RESULTS We used bilinear interpolation for the red and blue chan-
In our experiments, we used the images shown in Fig. 'i‘?ls' and the edge-directed interpoIaFio_r_\ method given in
These images are film captures and digitized with photo scanr{grl. for the green ‘?ha””e'_to get the initial estlmate.s. The
Full color channels are available, and the CFA is simulated | ,_thOd proposed in Section 1I-D3 was used to reﬁne .the
sampling the channels. The sampled channels are used to! E?I estimate Qf the green channel. The following  fil-
the demosaicing algorithms. ters were used in the experimentsy = [1 2 1]/4;
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(g} Method in [11]. ih) Proposed (1-1, 8 iterations),
Fig. 11. (Continued) Comparison of the methods fomage 16 (e) Method in [9]. (f) Method in [10]. (g) Method in [11]. (h) Proposed (1-L, 8 iterations).
hi = [1 -2 1]/4;90 = [-1 2 6 2 -1]/8 and mance in terms of mean squared error can be seen in Table IlI
—6 2 1]/8. The thresholdl’(ny,n2) was for both our and various other demosaicing algorithms [2], [5],

gL = [1 2
set to zero for all(ni,ns). We did the experiments for both[6], [9]-[11]. As seen in that table, the proposed algorithm has

one-level decomposition and two-level decomposition. Thhke lowest mean squared error in almost all cases. Among these
number of iterations for one-level (1-L) and two-level (2-Lilgorithms, [9] and [11] have comparable performance in the
decompositions was eight and four, respectively. The perfareen channel for some images. (The ones whose performance
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was better than the proposed method are highlighted.) Howeysrsed. However, in the experiments this was not needed, and
their red and blue channel performance was worse in all casestting the threshold to zero worked very well. Threshold selec-
which make them worse visually. Another successful methdidn and inclusion of other constraint sets are left as future work.
was Kimmel's method [10]. In that paper the red, green, adtdshould also be noted the test images used are film captures
blue channels were corrected iteratively to satisfy the color rativat were digitized with photo scanner. Therefore, they have dif-
rule, and the number of iterations was set to three. However, f@ent noise power spectrums compared to actual digital camera
found that algorithm to be prone to color artifacts, and iteratirgfiptures, and more thorough performance analysis of the de-
three times made the results worse in such cases. Thereforan@saicing algorithm should be done for different capture and

our implementation we did color correction only once. digitization paths.
We also provide some examples from the images used in
the experiments for visual comparison. Fig. 9—11 show cropped APPENDIX
segments from original imagebr(ages4, 6, and 16 in Fig. 2), CONVEXITY OF THE CONSTRAINT SETS

and the corresponding reconstructed images from the demoyye gutline the convexity proofs of the observation and detail

saicing algorithms that were used in comparison. Close examnstraint sets that are given in (2) and (8), respectively.
nation of those figures verifies the effectiveness of the proposed

algorithm. A. Observation Constraint Sét,
Let S1(n1,7n2) andSz(n1,n2) be any two points in the set
IV. COMPLEXITY ANALYSIS C,. That is,
Letly,, in,, Iy, andl, denote the lengths of the filtefs, Si(n1,m2) = O(ni,n2) ¥ (n1,n2) € As (19)

h1, go, andgy, respectively, and lel/ and N denote the width

and height of an image. Each channel is decomposed iabed
four subbands by convolving its rows and columns with filters
ho and hy. This requires approximatel§2l;, + 41, )MN Sa(n1,n2) = O(n1,m2) V(n1,n2) € As. (20)
multiplications and additions for each channel. Includin
the reconstruction stage the total number of additions a
multiplications is [2(1;,, + g4, ) + 4(l,, + 15 )] M N for each
channel. Typically, three iterations is enough for updati
the red and blue channels, which will require a total O
[12(Ip, +1g,) + 24(n, +14,)] M N operations for the red and
blue channels. As aresultd(l;, +{,,) + 28(l5, + 1, )| MN
operations are required for the iteration stages. We also update

%8r convexity, we need to show that all points of the line segment
connectingS; (n1,n2) andSa(ny, ne) remain in the set’,. Let
n?g(ﬂhﬂg) = 0451(711,712) + (1 — 04)52(711,712) be this line
egment0 < « < 1). Using (19) and (20), we get:

Sg(ﬂl,ﬂg) IOésl(TLl,TLQ) + (1 - Oé)SQ(TLl,TLQ)
=a0(n1,n2) + (1 — @)O(n1,n2),

the initial estimate of the green channel as proposed in Sec- V (n1,n2) € As

tion II-D with a one-level decomposition, and one iteration. =0(n1,n2), V(ni1,n2) € As. (21)
This adds approximately(2(l;,, + 1,,) + 4(ln, +15) ] MN

operations to the total count, which brings the total operatidhat is,S3(ny,n2) € Cs. u

count to [16(1p, + 14, ) + 32(ln, +15)] M N. For the filters _ _

used in the experiment, this number3&M N. If four itera- B- Detail Constraint Se€’y

tions are done, the total complexity480M N. If a two-level Let S1(n1,n2) andSz(n1,n2) be any two points in the set
decomposition is performed, a single iteration should be sufti*;. Referring to (5)—(7) in the manuscript, we can write
cient. Under this assumption using the filters in this paper, the

total complexity for a two-level decomposition is aB®IMN  |ha(n1) * [hy(n2) * S1(n1,n2)] — (Wi G) (n1,n2)|

additions and multiplications. <T(ni,n2) (22)

V. CONCLUSION and

In this paper we presented a demosaicing algorithm that. (n1) * [~y (n2) * Sa(n1,n2)] — WrG) (n1,n2)|
exploits inter-channel correlation in an alternating projections < T(ny,ng) (23)
scheme. Two constraint sets are defined based on the observed
data and the prior knowledge about the correlation of the chamhere the subscripts andy are chosen according to the value
nels, and initial estimates are projected onto these constraft as in (5)—(7).
sets to reconstruct the channels. The proposed algorithm waggain, we need to show that all points of the line segment
compared with well-known demosaicing algorithms, and @onnectingS;(n1, n2) andSz(n1,n2) remain in the se€y, for
showed an outstanding performance both visually and in terc@nvexity.
of mean square error at a reasonable computational complexityLet Sz(ni,n2) = aSi(n1,n2) + (1 — a)S2(n1,nq) for
The question of uncorrelated color channels has also beer « < 1. We will now show thatSs(nq, n2) is in Cy. We
addressed, and a threshold selection procedure has been wilbomit the indicesn; andns in the notation to simplify the
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equations. See (24) at the bottom of the page. Add and subtragg] J. E. Adams Jr., “Design of practical color filter array interpolation al-
a(W,G) inside the (24) and regroup the terms to get (see (25)

at the bottom of the page). Use the triangular inequality and the[g]
inequalities given in (22) and (23) to get

|ha o [hy + Sa] — (Wi @)| <or[{hg * [hy + S1] — (Wi G}
+(1 -«
X [{he # [hy * So] = (WG
<alT'+(1-a)T
=T (26)
Therefore,S3(n1,n2) € Cy. [ |
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