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Templates are among the most powerful features of C++, but they are too often neglected, misunderstood, and
misused. C++ Templates: The Complete Guide provides software architects and engineers with a clear understanding
of why, when, and how to use templates to build and maintain cleaner, faster, and smarter software more efficiently.

C++ Templates begins with an insightful tutoria on basic concepts and language features. The remainder of the book
serves as acomprehensve reference, focusing first on language details, then on awide range of coding techniques,
and findly on advanced applications for templates. Examples used throughout the book illustrate abstract concepts
and demonstrate best practices.

Readerslearn

The exact behaviors of templates

How to avoid the pitfalls associated with templates

Idioms and techniques, from the basic to the previoudy undocumented

How to reuse source code without threatening performance or safety

How to increase the efficiency of C++ programs
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How to produce more flexible and maintainable software

This practicd guide shows programmers how to exploit the full power of the template featuresin C++.
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Preface

Theidea of templatesin C++ ismore than ten years old. C++ templates were aready documented in 1990 in the
"Annotated C++ Reference Manud" or so-cdled "ARM" (see [ EllisStroustrupARM ) and they had been described
before that in more speciaized publications. However, well over adecade later we found a dearth of literature that
concentrates on the fundamental concepts and advanced techniques of this fascinating, complex, and powerful C++
feature. We wanted to address thisissue and decided to write the book about templates (with perhaps adight lack
of humility).

However, we approached the task with different backgrounds and with different intentions. David, an experienced
compiler implementer and member of the C++ Standard Committee Core Language Working Group, wasinterested
in an exact and detailed description of al the power (and problems) of templates. Nico, an "ordinary” application
programmer and member of the C++ Standard Committee Library Working Group, was interested in understanding
all the techniques of templatesin away that he could use and benefit from them. In addition, we both wanted to share
this knowledge with you, the reader, and the whole community to help to avoid further misunderstanding, confusion,
or gpprehension.

As aconsequence, you will see both conceptua introductions with day-to-day examples and detailed descriptions of
the exact behavior of templates. Starting from the basic principles of templates and working up to the "art of template
programming,” you will discover (or rediscover) techniques such as static polymorphism, policy classes,
metaprogramming, and expression templates. Y ou will also gain adeeper understanding of the C++ standard library,
inwhich dmog dl code involvestemplates.

Welearned alot and we had much fun while writing this book. We hope you will have the same experience while
reading it. Enjoy!
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Chapter 1. About This Book

Although templates have been part of C++ for well over adecade (and availablein variousformsfor amost aslong),
they till lead to misunderstanding, misuse, or controversy. At the sametime, they areincreasingly found to be
powerful instruments for the development of cleaner, faster, and smarter software. Indeed, templates have become
the cornerstone of several new C++ programming paradigms.

Y et we have found that most existing books and articles are at best superficia in their treetment of the theory and
gpplication of C++ templates. Even those few books that do an excellent job of surveying various templ ate-based
techniquesfail to describe accurately how these techniques are supported by the language. Asaresult, beginning and
advanced C++ programmers dike are finding themsalves wrestling with templ ates, attempting to decide why their
codeis handled unexpectedly.

This observation was one of the main motivations for usto write this book. However, we both came up with the
topic independently and had somewhat distinct approachesin mind:

David's god wasto provide acomplete reference to the details of the C++ template language mechanism
and the mgor advanced programming techniques that templates enable. His focus was on precision and
completeness.

Nico'sinterest wasto have abook that helps himsalf and others use templatesin the day-to-day life of a
programmer. Thisimpliesthat the book should present the materid in an intuitive manner, while dealing with
the practical aspects of templates.

Inasense, you could see us as a scientist-engineer pair: We both deal with the same discipline, but our emphasisis
somewhat different (with much overlap, of course).

Addison-Wed ey brought ustogether and as aresult you get what we think isasolid combination of acareful C++
template tutoria with adetailed reference. The tutoria aspect covers not only an introduction to the language
elements, but dso ams at developing asense for design methods that lead to practica solutions. Smilarly, the book
isnot only areferencefor the details of C++ template syntax and semantics, but aso a compendium of well-known
and lesser known idioms and techniques.
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Ru-Brd
1.1 What You Should Know Before Reading This Book

To get the most from this book you should already know C++: We describe the details of a particular language
feature, not the fundamentals of the language itself. Y ou should be familiar with the concepts of classesand
inheritance, and you should be able to write C++ programs using components such as | Ostreams and containers
from the C++ standard library. In addition, we review more subtle issues as the need arises, even when such issues
arent directly related to templates. Thisensuresthat thetext is ble to experts and intermediate programmers
dike.

We deal mostly with the C++ language as standardized in 1998 (see [ Standard98]), plusthe clarifications provided
by the C++ Standardization Committeein itsfirst technica corrigendum (see [ Standard02]). If you fed your
understanding of the basics of C++ isrusty or out-of-date, we recommend [ StroustrupC++PL ], [ JosuttisOOP], and [
JosuttisStdL ib] to refresh your knowledge. These books are excellent introductions to the modern language and its
standard library. Additiona publicationsarelisted in Appendix B.3.5.

Ru-Brd
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1.2 Overall Structur e of the Book

Our god isto provide the information necessary for starting to use templates and benefit from their power, aswell as
to provide information that will enable experienced programmersto push the limits of the state-of-the-art. To achieve
this, we decided to organize our text in parts.

Part | introduces the basic concepts underlying templates. It iswritten in atutorid style.

Part 11 presentsthe language details and is a handy reference to template-related constructs.

Part 111 explainsfundamental design techniques supported by C++ templates. They range from near-trivia
Ideas to sophigticated idioms that may not have been published elsawhere.

Part IV builds on the previous two parts and adds a discussion of various popular gpplications for templates.

Each of these parts conssts of severd chapters. In addition, we provide afew gppendixesthat cover materia not
exclusvely related to templates (for example, an overview of overload resolution in C++).

The chapters of Part | are meant to be read in sequence. For example, Chapter 3 builds on the materid coveredin
Chapter 2. In the other parts, however, the connection between chaptersis considerably looser. For example, it
would be entirely natural to read the chapter about functors (Chapter 22) before the chapter about smart pointers (

Chapter 20).

Last, we provide arather complete index that encourages additiona ways to read this book out of sequence.

Ru-Brd
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1.3 How to Read This Book

If you are a C++ programmer who wantsto learn or review the concepts of templates, carefully read Part |, The
Basics. Evenif youre quite familiar with templates aready, it may help to skim through this part quickly to familiarize
yoursdlf with the style and terminology that we use. This part dso covers some of the logistical aspects of organizing
your source code when it contains templates.

Depending on your preferred learning method, you may decide to absorb the many details of templatesin Part 11, or
instead you could read about practica coding techniquesin Part 111 (and refer back to Part |1 for the more subtle
language issues). The latter approach is probably particularly useful if you bought this book with concrete day-to-day
chdlengesinmind. Part 1V issomewhat smilar to Part |11, but the emphasisis on understanding how templates can
contribute to specific gpplications rather than design techniques. It istherefore probably best to familiarize yoursdlf
with thetopicsof Part 111 beforeddvinginto Part 1V.

The gppendixes contain much useful information that is often referred to in the main text. We have aso tried to make
them interegting in their own right.

In our experience, the best way to learn something new isto look at examples. Therefore, you'l find alot of
examples throughout the book. Some are just afew lines of code illustrating an abstract concept, whereas others are
complete programs that provide a concrete gpplication of the materid. Thelatter kind of exampleswill beintroduced
by a C++ comment describing the file containing the program code. Y ou can find thesefiles at the Web site of this
book at http://mww.josuttis.com/tmpl book/ .

Ru-Brd
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1.4 Some Remar ks About Programming Style

C++ programmers use different programming styles, and so do we: The usua questions about where to put
whitespace, ddimiters (braces, parentheses), and so forth came up. We tried to be consistent in general, although we
occasionally make concessions to the topic at hand. For example, in tutoria sections we may prefer generous use of
whitespace and concrete names to help visualize code, whereas in more advanced discussions amore compact style
could be more appropriate.

We do want to draw your attention to one dightly uncommon decision regarding the declaration of types,
parameters, and variables. Clearly, severd stylesare possible;

void foo (const int &x);
void foo (const int& x);
void foo (int const &x);
void foo (int const& x);

Although it isabit less common, we decided to use the order int const rather than const int for "constant integer.” We
have two reasonsfor this. Firg, it providesfor an easier answer to the question, "What is constant?" It's ways what
isinfront of the congt qudifier. Indeed, athough

const int N = 100;

iIsequivadent to

int const N 100;

thereisno equivaent formfor

i nt* const booknark; /1 the pointer cannot change, but the
/1 val ue pointed to can change

that would place the const qualifier before the pointer operator *. In thisexample, it isthe pointer itself that is
congtant, not theint to which it points.

Our second reason hasto do with asyntactical subgtitution principle that is very common when dealing with
templates. Consder the following two type definitions [1] :

[1] Notethat in C++ atype definition definesa"type dias’ rather than anew type. For example:
typedef int Length; // define Length as an alias for int

int i = 42;

Lengthl = 88;

i=1; I oK

typedef char* CHARS
typedef CHARS const CPTR // constant pointer to chars

The meaning of the second declaration is preserved when we textudly replace CHARS with what it standsfor:
typedef char* const CPTR // constant pointer to chars

However, if we write const before the typeit quaifies, this principle doesn't apply. Indeed, consider the aternative to
our first two type definitions presented earlier:
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1.5 The Standard versus Reality

The C++ standard has been available since late 1998. However, it was not until 2002 that a publically available
compiler could make the claim to "conform fully to the standard.” Thus, compilers till differ in their support of the
language. Severd will compile most of the code in this book, but afew fairly popular compilers may not be ableto
handle many of our examples. We often present dternative techniques that may help cobble together afull or partia
solution for these substandard C++ implementations, but some techniques are currently beyond their reach. Still, we
expect that this problem will largely be resolved as programmers everywhere demand standard support from their
vendors.

Even so, the C++ programming language islikely to evolve astime passes. Already the experts of the C++
community (regardiess of whether they participate in the C++ Standardization Committee) are discussing various
ways to improve the language, and several candidate improvements affect templates. Chapter 13 presents some
trendsinthisarea
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1.6 Example Code and Additional Informations

Y ou can access dl example programs and find more information about this book from its Web site, which hasthe
following URL.:

http:/Awww.josuttis.com/tmplbook

Also, you can find alot of additiond information about thistopic at David Vandevoorde's Web site at
http://www.vandevoorde.com/Templates and on the Web in generd. See the Bibliogrgphy on page 499 for
suggestions on where to sart.
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1.7 Feedback

We welcome your constructive input—both the negative and the positive. We worked very hard to bring you what
we hope you'l find to be an excellent book. However, at some point we had to stop writing, reviewing, and tweaking
so we could "release the product.” Y ou may therefore find errors, inconsistencies, and presentations that could be
improved, or topicsthat are missing atogether. Y our feedback gives us achanceto inform al readers through the
book's Web site and to improve any subsequent editions.

The best way to reach usisby email:

tmplbook @j osuttis.com

Be sure to check the book's Web site for the currently known errata before submitting reports.

Many thanks.

Ru-Brd
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Part |: TheBasics

This part introduces the general concept and language features of C++ templates. It startswith adiscussion of the
genera goas and concepts by showing examples of function templates and class templates. It continues with some
additional fundamenta template techniques such as nontype template parameters, the keyword typename, and
member templates. It endswith some generd hints regarding the use and application of templatesin practice.

Thisintroduction to templatesis dso partialy used in Nicolai M. Josuttiss book Object-Oriented Programming in
C++, published by John Wiley and Sons Ltd, ISBN 0-470-84399-3. This book teaches al language features of
C++ and the C++ standard library and explainstheir practica usagein a step-by-step tutoridl.

Why Templates?

C++ requires usto declare variables, functions, and most other kinds of entities using specific types. However, alot
of code looksthe samefor different types. Especidly if you implement agorithms, such as quicksort, or if you
implement the behavior of data structures, such asalinked list or abinary tree for different types, the code looksthe
same despite the type used.
If your programming language doesn't support aspecid language feature for this, you only have bad dternatives:

1.

Y ou can implement the same behavior again and again for each type that needs this behavior.
Y ou can write general code for acommon base type such as Object or void*.

Y ou can use specia preprocessors.
If you comefrom C, Java, or smilar languages, you probably have done some or al of this before. However, each of
these approaches has its drawbacks:
1.

If you implement abehavior again and again, you reinvent thewhed. Y ou make the same mistakes and you
tend to avoid complicated but better agorithms because they lead to even more mistakes.

If you write general code for acommon base class you |lose the benefit of type checking. In addition, classes
may be required to be derived from specid base classes, which makesit more difficult to maintain your code.
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Chapter 2. Function Templates

This chapter introduces function templates. Function templates are functions that are parameterized so that they
represent afamily of functions.
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2.1 A First Look at Function Templates

Function templates provide afunctiona behavior that can be called for different types. In other words, afunction
template represents afamily of functions. The representation looks alot like an ordinary function, except that some
elements of the function are left undetermined: These dements are parameterized. Toilludtrate, let'slook at asmple
example

2.1.1 Defining the Template

Thefollowing isafunction template that returns the maximum of two vaues:

/'l basics/ max. hpp

tenpl ate <typenanme T>
inline T const& max (T const& a, T const& b)

// if a < b then use b else use a
return a<b?b: a;

}

Thistemplate definition pecifiesafamily of functions that returns the maximum of two vaues, which are passed as
function parameters aand b. The type of these parametersis|eft open astemplate parameter T. Asseenin this
example, template parameters must be announced with syntax of the following form:

tenpl ate < commua- separ at ed-1i st-of - paraneters >

In our example, the list of parametersistypename T. Note how the less-than and the greater-than symbols are used
as brackets, we refer to these as angle brackets. The keyword typename introduces a so-called type parameter. This
isby far the most common kind of template parameter in C++ programs, but other parameters are possible, and we
discussthem later (see Chapter 4).

Here, the type parameter isT. Y ou can use any identifier as aparameter name, but using T isthe convention. The
type parameter represents an arbitrary type that is specified by the caller when the caller calls the function. Y ou can
use any type (fundamental type, class, and so on) aslong asit provides the operations that the template uses. In this
case, type T has to support operator < because aand b are compared using this operator.

For historical reasons, you can aso use classinstead of typename to define atype parameter. The keyword
typename came relatively late in the evolution of the C++ language. Prior to that, the keyword class was the only way
to introduce atype parameter, and thisremainsavaid way to do so. Hence, the template max() could be defined
equivaently asfollows

templ ate <class T>
inline T const& max (T const& a, T const& b)

I/ if a < b then use b el se use a
return a<b?b: a;

}

Semantically thereisno differencein this context. So, even if you use class here, any type may be used for template
arguments. However, because this use of class can be mideading (not only class types can be substituted for T), you
should prefer the use of typenamein this context. Note aso that unlike class type declarations, the keyword struct
cannot be used in place of typename when declaring type parameters.
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2.2 Argument Deduction

When we cal afunction template such as max() for some arguments, the template parameters are determined by the
arguments we pass. If we passtwo intsto the parameter types T const& , the C++ compiler must conclude that T
must be int. Note that no automatic type conversion isalowed here. Each T must match exactly. For example:

tenpl ate <typenane T>
inline T const& nax (T const& a, T const& b);

max (4, 7) [l OK Tis int for both argunents
max(4, 4. 2) // ERROR first Tis int, second T is double

There are three ways to handle such an error:
1

Cadt the arguments o that they both match:
max(static_cast <doubl e>(4), 4. 2) [l K

2.

Specify (or quaify) explicitly thetypeof T:
max<doubl e>( 4, 4. 2) Il K

3.

Specify that the parameters may have different types.

For adetailed discussion of these topics, see the next section.
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2.3 Template Parameters

Function templates have two kinds of parameters:

1.
Template parameters, which are declared in angle brackets before the function template name:
tenpl ate <typenane T> [l T is tenplate paraneter
2.

Cdl parameters, which are declared in parentheses after the function template name:
max (T const& a, T const& b) /[l a and b are call paraneters

Y ou may have as many template parameters as you like. However, in function templates (unlike class templates) no
default template arguments can be specified. [3] For example, you could define the max() template for call
parameters of two different types:

[3] Thisredtrictionismainly the result of ahistorica glitch in the development of function templates. There are
probably no technica hindrances to implementing such afeature in modern C++ compilers, and in the future it will
probably be available (see Section 13.3 on page 207).

tenpl ate <typenane T1, typenanme T2>
inline T1 max (Tl const& a, T2 const& b)

{
}

max(4, 4. 2) /1 OK, but type of first argunent defines return type

return a<b ? b : a;

This may appear to be agood method to enable passing two call parameters of different typesto the max() template,
but in thisexample it has drawbacks. The problem isthat the return type must be declared. If you use one of the
parameter types, the argument for the other parameter might get converted to thistype, regardiess of the caller's
intention. C++ does not provide a means to specify choosing "the more powerful type" (however, you can provide
thisfeature by sometricky template programming, see Section 15.2.4 on page 271). Thus, depending on the call
argument order the maximum of 42 and 66.66 might be the double 66.66 or the int 66. Another drawback isthat
converting the type of the second parameter into the return type creates anew, local temporary object. Asa
consequence, you cannot return the result by reference. [4] In our example, therefore, the return type hasto be T1
instead of T1 const& .

[4] You are not dlowed to return values by referenceif they are local to afunction because you'd return something
that doesn't exist when the program leaves the scope of thisfunction.

Because the types of the call parameters are constructed from the template parameters, template and call parameters
areusudly related. We cal this concept function template argument deduction. It dlowsyou to cal afunction
template as you would an ordinary function.

However, as mentioned earlier, you can indantiate atemplate explicitly for certain types:

tenpl ate <typenanme T>
inline T const& max (T const& a, T const& b);

max<doubl e>(4, 4. 2) /1 instantiate T as double









2.4 Overloading Function Templates

Like ordinary functions, function templates can be overloaded. That is, you can have different function definitions with
the same function name so that when that nameis used in afunction call, a C++ compiler must decide which one of
the various candidates to call. The rulesfor this decison may become rather complicated, even without templates. In
this section we discuss overloading when templates are involved. If you are not familiar with the basic rules of
overloading without templates, pleaselook a Appendix B, where we provide areasonably detailed survey of the
overload resolution rules.

Thefollowing short program illustrates overl oading afunction template:

/'l basi cs/ max2. cpp

/1 maxi mum of two int val ues
inline int const& max (int const& a, int const& b)

{
}

return a<b?b: a;

/1 maxi mum of two val ues of any type
tenpl ate <typenane T>
inline T const& nax (T const& a, T const& b)

{
}

return a<b?b: a;

/1 maxi mum of three values of any type
tenpl ate <typenane T>
inline T const& max (T const& a, T const& b, T consté& c)

{
return max (nax(a,b), c);

}

int main()

{
omax(7, 42, 68); /1 calls the tenplate for three argunents
rmax(7.0, 42.0); /1 calls max<doubl e> (by argunment deducti on)
rmax('a', 'b'); /1 calls max<char> (by argunent deduction)
omax(7, 42); /1 calls the nontenplate for two ints
rmax<>(7, 42); /1 calls max<int> (by argument deduction)
. max<doubl e>(7, 42); // calls max<doubl e> (no argunent deducti on)
omax(ta'l, 42.7); /1 calls the nontenplate for two ints

}

Asthis example shows, a nontemplate function can coexist with afunction template that has the same name and can
be ingtantiated with the same type. All other factors being equal, the overload resolution process normaly prefersthis
nontemplate over one generated from the template. The fourth call falls under thisrule:

max(7, 42) /1 both int values nmatch the nontenplate function perfectly

If the template can generate afunction with a better match, however, then the template is selected. Thisis
demondtrated by the second and third cal of max():

mex(7.0, 42.0) // calls the nmax<doubl e> (by argument deducti on)
mex('a', 'b'); [/ calls the nax<char> (by argunent deducti on)

It isaso possible to specify explicitly an empty template argument list. This syntax indicates that only templates may
resolveacal, but dl the template parameters should be deduced from the cal arguments:
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2.5 Summary
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Template functions define afamily of functionsfor different template arguments.

When you pass template arguments, function templates are instantiated for these argument types.

Y ou can explicitly qudify the template parameters.

Y ou can overload function templates.

When you overload function templates, limit your changes to specifying template parameters explicitly.

Make sure you see dl overloaded versions of function templates before you cal them.
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Chapter 3. Class Templates

Similar to functions, classes can a'so be parameterized with one or more types. Container classes, which are used to
manage e ements of acertain type, are atypica example of thisfeature. By usng classtemplates, you can implement
such container classeswhile the dement typeis still open. In this chapter we use a stack as an example of aclass
template.
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3.1 Implementation of Class Template Stack

Aswe did with function templ ates, we declare and define class Stack<> in aheader file asfollows (we discuss the
separation of declaration and definition in different filesin Section 7.3 on page 89):

/'l basics/stackl. hpp

#i ncl ude <vector>
#i ncl ude <stdexcept >

tenpl ate <typenanme T>
class Stack {

private:
std::vector<T> el ens; /1 elenments
public:
voi d push(T const&); /1 push el enent
voi d pop(); /1 pop el ement
T top() const; [l return top el enent
bool enmpty() const { /1 return whether the stack is enpty

return elens.empty();

}
H
tenpl ate <typename T>
voi d Stack<T>::push (T const& elem

{
}

el ens. push_back(el em; /1 append copy of passed el em

t enpl at e<t ypenane T>
voi d Stack<T>::pop ()

if (elems.enpty()) {
throw std::out_of _range("Stack<>::pop(): enpty stack");
}

el ems. pop_back(); /'l renove | ast el enent

}

tenpl ate <typename T>
T Stack<T>::top () const

if (elems.enpty()) {
throw std::out_of _range("Stack<>::top(): enpty stack");
}

return el enms. back(); /1 return copy of |ast elenent

}

Asyou can see, the class template isimplemented by using a class template of the C++ standard library: vector<>.
Asaresult, we don't have to implement memory management, copy constructor, and assignment operator, so we can
concentrate on the interface of this class template.

3.1.1 Declaration of Class Templates

Declaring classtemplatesis smilar to declaring function templates. Before the declaration, a stlatement declaresan
identifier asatype parameter. Again, T isusudly used asan identifier:

tenpl ate <typenane T>
class Stack {

b









3.2 Use of Class Template Stack

To use an object of aclasstemplate, you must specify the template arguments explicitly. The following example
shows how to use the class template Stack<>:

/'l basics/stackltest.cpp

#i ncl ude <i ostreanp
#i ncl ude <string>

#i ncl ude <cstdlib>

#i ncl ude "stackl. hpp"

int main()
{
try {
St ack<i nt > i nt St ack; /1l stack of ints
St ack<std::string> stringStack; /1l stack of strings

/1 manipul ate int stack
i nt St ack. push(7);
std::cout << intStack.top() << std::endl;

/1 mani pul ate string stack

stringStack. push("hello");

std::cout << stringStack.top() << std::endl;
stringStack. pop();

stringStack. pop();

}
catch (std::exception const& ex) {
std::cerr << "Exception: " << ex.what() << std::endl;
return EXIT_FAILURE;, // exit programw th ERROR status
}

}

By declaring type Stack<int>, int isused astype T indde the classtemplate. Thus, intStack is created as an object
that uses avector of ints aselements and, for all member functionsthat are caled, code for thistypeisingtantiated.
Smilarly, by declaring and using Stack<std::string>, an object that uses avector of strings as elementsis crested, and
for dl member functionsthat are called, codefor thistypeisinstantiated.

Notethat codeisingtantiated only for member functionsthat are caled. For class templates, member functionsare
instantiated only when they are used. This, of course, savestime and space. It has the additional benefit that you can
ingtantiate a class even for those typesthat cannot perform al the operations of al the member functions, aslong as
these member functions are not caled. As an example, consder a classin which some member functions use the
operator < to sort eements. If you refrain from calling these member functions, you can ingtantiate the classtemplate
for typesfor which operator <isnot defined.

In this example, the default constructor, push(), and top() are ingtantiated for both int and strings. However, pop() is
ingtantiated only for strings. If aclass template has static members, these are instantiated once for each type.

Y ou can use atype of an instantiated class template as any other type, aslong as the operations are supported:

void foo (Stack<int> const& s) /] paraneter s is int stack

{

St ack<i nt> istack[ 10]; /1 istack is array of 10 int stacks









3.3 Specializations of Class Templates

Y ou can pecidize aclasstemplate for certain template arguments. Similar to the overloading of function templates
(see page 15), specidizing class templates dlows you to optimize implementations for certain typesor tofix a
misbehavior of certain types for an ingtantiation of the classtemplate. However, if you specialize a classtemplate, you
must dso specidize dl member functions. Although it is possible to specidize asingle member function, once you
have done so, you can no longer speciaize the whole class.

To specidize aclasstemplate, you have to declare the class with aleading template<> and a specification of the
types for which the classtemplate is specidized. The types are used as atemplate argument and must be specified
directly following the name of the class

templ at e<>
class Stack<std::string> {

};

For these specidizations, any definition of amember function must be defined as an "ordinary” member function, with
each occurrence of T being replaced by the speciaized type:

voi d Stack<std::string>: :push (std::string const& elen
{

}

el ems. push_back(el em ; /1 append copy of passed el em

Hereisacomplete example of aspecidization of Stack<> for type std::string:

/'l basics/ stack2. hpp

#i ncl ude <deque>
#i ncl ude <string>
#i ncl ude <st dexcept >
#i ncl ude "stackl. hpp"

tenpl at e<>
class Stack<std::string> {
private:
std::deque<std::string> elens; // elenents

public:
voi d push(std::string const&); // push el enent
voi d pop(); /1 pop el enent
std::string top() const; /1 return top el enent
bool enpty() const { /1 return whether the stack is enpty
return el ens. enpty();
}
b
voi d Stack<std::string>::push (std::string const& elen
{
el ens. push_back(el em ; /1 append copy of passed el em
}

voi d Stack<std::string>::pop ()

{

if (elems.enpty()) {
throw std::out_of range

("Stack<std::string>::pop(): enpty stack");
}

el enr non back() 1!l renove | ast el enent
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3.4 Partial Specialization

Classtemplates can be partialy specidized. Y ou can specify specia implementations for particular circumstances,
but some template parameters must still be defined by the user. For example, for the following class template

tenpl ate <typenane T1, typename T2>
class MyCQ ass {

H
the following partia pecidizationsare possble:

/'l partial specialization: both tenplate paraneters have sanme type
tenpl ate <typename T>
class Myd ass<T, T> {

H
/] partial specialization: second type is int

tenpl ate <typename T>
class Myd ass<T,int> {

H

I/ partial specialization: both tenplate paraneters are pointer types
tenpl ate <typenane T1, typename T2>

class Myd ass<T1*, T2*> {

H

The following example shows which template is used by which declaration:

MyCl ass<int,float> nif; /'l uses MyCl ass<T1, T2>
MyCl ass<float,float> nff; [/ uses Myd ass<T, T>
MyCl ass<fl oat,int> nfi; /1 uses Myd ass<T,int>

MyC ass<int*, fl oat*> np; /1 uses Myd ass<T1l*, T2*>

If more than one partid specidization matches equdly wdll, the declaration isambiguous:

MyCl ass<int,int>m /1 ERROR. matches Myd ass<T, T>
/1 and Myd ass<T,int>

MyC ass<int*,int*> m /1 ERROR. matches Myd ass<T, T>
/1 and Myd ass<T1*, T2*>

To resolve the second ambiguity, you can provide an additiond partid specidization for pointers of the sametype:

tenpl ate <typenane T>
class MO ass<T*, T*> {

}s

For details, see Section 12.4 on page 200.
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3.5 Default Template Arguments

For classtemplates you can aso define default values for template parameters. These values are called default
template arguments. They may even refer to previous template parameters. For example, in class Stack<> you can
define the container that is used to manage the e ements as a second template parameter, using std::vector<> asthe
default value

/'l basics/stack3. hpp

#i ncl ude <vector>
#i ncl ude <stdexcept >

tenpl ate <typenane T, typenane CONT = std::vector<T> >
class Stack {

private:
CONT el ens; /1 elements
public:
voi d push(T const&); /1 push el enent
voi d pop(); /'l pop el enent
T top() const; /1 return top el enent
bool enpty() const { /1 return whether the stack is enpty

return el ens. enpty();

}
}s

tenpl ate <typenane T, typenane CONT>
voi d Stack<T, CONT>:: push (T const& elem

{
}

tenpl ate <typenane T, typenane CONT>
voi d Stack<T, CONT>:: pop ()

el ens. push_back(el em ; /1 append copy of passed el em

if (elems.enpty()) {
throw std::out_of range("Stack<>::pop(): enpty stack");
}

el ens. pop_back(); /1 renmove | ast el enent

}

tenpl ate <typenane T, typenane CONT>
T Stack<T, CONT>::top () const

if (elems.enmpty()) {
throw std::out_of range("Stack<>::top(): enpty stack");
}

return el ens. back(); /1 return copy of last elenent

}

Note that we now have two template parameters, so each definition of a member function must be defined with these
two parameters.

tenpl ate <typenane T, typenane CONT>
voi d Stack<T, CONT>:: push (T const& elem

{
}

el ens. push_back(el en); /1 append copy of passed el em

Y ou can use this stack the sameway it was used before. Thus, if you passafirst and only argument as an eement
type, avector is used to manage the e ements of thistype:
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3.6 Summary
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A classtemplateisaclassthat isimplemented with one or more type parameters | eft open.

To use aclasstemplate, you pass the open types as template arguments. The classtemplateisthen
ingtantiated (and compiled) for these types.

For classtemplates, only those member functionsthat are called are instantiated.

Y ou can specidize classtemplates for certain types.

Y ou can partidly specidize classtemplatesfor certain types.

Y ou can define default valuesfor class template parameters. These may refer to previous template
parameters.
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Chapter 4. Nontype Template Parameters

For function and class templates, template parameters don't have to be types. They can aso be ordinary values. As
with templates using type parameters, you define code for which a certain detail remains open until the codeis used.
However, the detail that isopen isavaueinstead of atype. When using such atemplate, you have to specify this
vaue explicitly. The resulting code then getsingantiated. This chapter illustrates this feeture for anew version of the
stack classtemplate. In addition, we show an example of nontype function template parameters and discuss some
restrictionsto thistechnique.
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4.1 Nontype Class Template Parameters

In contrast to the sample implementations of astack in previous chapters, you can aso implement astack by usng a
fixed-sze array for the dements. An advantage of this method is that the memory management overhead, whether
performed by you or by a standard container, is avoided. However, determining the best size for such astack can be
chalenging. The smaller the Sze you specify, the morelikdly it isthat the stack will get full. Thelarger the szeyou
specify, themorelikely it isthat memory will be reserved unnecessarily. A good solution isto let the user of the stack
specify the Sze of the array as the maximum sze needed for stack dements.

To do this, define the size as atemplate parameter:

/'l basics/ stack4. hpp
#i ncl ude <st dexcept >

tenpl ate <typenanme T, int MAXSI ZE>
class Stack {

private:

T el ens[ MAXSI ZE] ; /1 el enents

i nt nuntl ens; /1 current number of elenents
public:

Stack(); /'l constructor

voi d push(T const&); /'l push el ement

voi d pop(); /1 pop el enent

T top() const; /1 return top el enent

bool enpty() const { /1 return whether the stack is enpty

return nuntl ens == 0;
}
bool full () const { /1 return whether the stack is full

return nunEl ens == MAXSI ZE;

}
}s

/'l constructor
tenpl ate <typenanme T, int MAXSI ZE>
St ack<T, MAXSI ZE>: : Stack ()
nukl ens( 0) /] start with no elenents

{
}

/1 nothing else to do

tenpl ate <typenanme T, int MAXSI ZE>
voi d St ack<T, MAXSI ZE>: : push (T const& el em

{
if (nunkl ems == MAXSI ZE) {
throw std::out_of range("Stack<>::push(): stack is full");
}
el ens[ nuntl ens] = elem // append el enent
++nuntl ens; /1 increnent nunber of elenents
}

tenpl at e<typenane T, int MAXSI ZE>
voi d St ack<T, MAXSI ZE>: : pop ()

{
if (nunElems <= 0) {
throw std::out_of _range("Stack<>::pop(): enpty stack");
}
- - nunkl ens; /1 decrement nunber of elenents
}

tenpl ate <typenanme T, int MAXSI ZE>
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4.2 Nontype Function Template Parameters

Y ou can aso define nontype parameters for function templates. For example, the following function templ ate defines
agroup of functionsfor which a certain value can be added:

/'l basi cs/ addval . hpp

tenpl ate <typenanme T, int VAL>
T addVal ue (T const & x)

{
}

return x + VAL;

These kinds of functions are useful if functions or operationsin genera are used as parameters. For example, if you
use the Standard Template Library (STL) you can pass an ingantiation of thisfunction template to add avalueto
each element of acollection:

std::transform (source. begin(), source.end(), // start and end of source
dest . begin(), /1l start of destination
addVal ue<i nt, 5>); /1 operation

The last argument ingtantiates the function template addVaue() to add 5 to an int vaue. Theresulting functionis
caled for each element in the source collection source, whileit istrandated into the destination collection dest.

Note that there is a problem with this example: addVdue<int,5> isafunction template, and function templates are
consdered to name a set of overloaded functions (even if the set has only one member). However, according to the
current standard, sets of overloaded functions cannot be used for template parameter deduction. Thus, you haveto
cadt to the exact type of the function template argument:

std::transform (source. begin(), source.end(), // start and end of source
dest . begi n(), /1l start of destination
(int(*)(int const&) addValue<int,5>); [/ operation

Thereisaproposal for the standard to fix this behavior so that the cast isn't necessary in this context (see [
Corelssuell5] for details), but until then the cast may be necessary to be portable.
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4.3 Restrictionsfor Nontype Template Parameters

Note that nontype template parameters carry some restrictions. In generd, they may be constant integral values
(including enumerations) or pointersto objects with externa linkage.

Foating-point numbers and class-type objects are not alowed as nontype template parameters.

tenpl at e <doubl e VAT> /! ERROR fl oating-point values are not
doubl e process (double v) /1 all owed as tenpl ate parameters
{

return v * VAT,
}
tenpl ate <std::string name> // ERROR class-type objects are not
class MWd ass { /1 all oned as tenpl ate parameters
H

Not being able to use floating-point litera's (and S mple constant floating-point expressions) as template arguments
has historical reasons. Because there are no serious technical chalenges, this may be supported in future versons of
C++ (see Section 13.4 on page 210).

Because gtring literds are objects with interna linkage (two string literalswith the same vaue but in different modules
aredifferent objects), you can't use them as template arguments either:

tenpl ate <char const* nanme>
class MO ass {

H
MyCd ass<"hel | 0" > x; // ERROR string literal "hello" not allowed
Y ou cannot use agloba pointer ether:

tenpl ate <char const* nanme>
class MO ass {

b

char const* s = "hello";

Myd ass<s> X; /1 ERROR. s is pointer to object with internal |inkage
However, thefollowingispossble:

tenpl ate <char const* nane>
class MO ass {

b
extern char const s[] = "hello";
MyCl ass<s> Xx; Il K

Thegloba character array sisinitidized by "hello" so that sisan object with externd linkage.
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4.4 Summary

Templates can have template parameters that are values rather than types.

Y ou cannot use floating-point numbers, class-type objects, and objectswith interna linkage (such as string
literals) as arguments for nontype template parameters.
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Chapter 5. Tricky Basics

This chapter covers some further basic aspects of templates that are relevant to the practica use of templates. an
additiona use of the typename keyword, defining member functions and nested classes astempl ates, template
template parameters, zero initidization, and some details about using string literals as arguments for function
templates. These aspects can betricky at times, but every day-to-day programmer should have heard of them.
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5.1 Keyword typename

The keyword typename was introduced during the standardization of C++ to clarify that an identifier ingdea
templateisatype. Condder the following example;

tenpl ate <typename T>
class Myd ass {

typenane T::SubType * ptr;
H

Here, the second typename is used to clarify that SubTypeisatype defined within class T. Thus, ptr isa pointer to
thetype T::SubType.

Without typename, SubType would be considered a static member. Thus, it would be a concrete variable or object.
Asareault, the expresson

T:: SubType * ptr

would be amultiplication of the static SubType member of class T with ptr.

In generd, typename hasto be used whenever aname that depends on atemplate parameter isatype. Thisis
discussed in detall in Section 9.3.2 on page 130.

A typical application of typename isthe accessto iterators of STL containersin template code:

/'l basics/printcoll.hpp
#i ncl ude <i ostrean
/1l print elenents of an STL contai ner

tenpl ate <typenane T>
void printcoll (T consté& coll)

{
typenane T::const _iterator pos; [/ iterator to iterate over col
typenane T::const_iterator end(coll.end()); // end position
for (pos=coll.begin(); pos!=end; ++pos) {
std::cout << *pos <<
}
std::cout << std::endl
}

In this function template, the call parameter isan STL container of type T. To iterate over dl eements of the
container, the iterator type of the container is used, which is declared astype congt_iterator insde each STL
container class

class stlcontainer {

t ypedef iterator; /] iterator for read/wite access
t ypedef const iterator; // iterator for read access

}s

Thus, to accesstype const_iterator of template type T, you have to quaify it with aleading typename:
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5.2 Using this->

For classtemplates with base classes, usng aname x by itsdf is not always equivaent to this>x, even though a
member X isinherited. For example:

tenpl ate <typename T>
cl ass Base {
public:
void exit();

}

tenpl ate <typename T>
cl ass Derived : Base<T> {
public:
void foo() {
exit(); /1 calls external exit() or error

}
}

In thisexample, for resolving the symboal exit insgde foo(), exit() defined in Base is never consdered. Therefore, elther
you have an error, or another exit() (such asthe standard exit()) is called.

Wediscussthisissuein Section 9.4.2 on page 136 in detail. For the moment, as arule of thumb, we recommend that
you aways qudify any symbol that is declared in a base that is somehow dependent on atemplate parameter with
this-> or Base<T>:.. If you want to avoid al uncertainty, you may consder quaifying al member accesses(in
templates).
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5.3 Member Templates

Class members can dso be templates. Thisis possible for both nested classes and member functions. The gpplication
and advantage of this ability can again be demonsirated with the Stack<> class template. Normally you can assign
stacksto each other only when they have the same type, which implies that the el ements have the same type.
However, you can't assign astack with elements of any other type, even if thereisan implicit type converson for the
element types defined:

St ack<i nt> intStackl, intStack?2; /|l stacks for ints
St ack<fl oat > f| oat St ack; /|l stack for floats

i nt Stackl = intStack2; /1l OK: stacks have sane type
float Stack = intStackl; // ERROR stacks have different types

The default assgnment operator requires that both sides of the assgnment operator have the same type, which is not
the case if gtacks have different dement types.

By defining an assignment operator as atemplate, however, you can enable the assignment of stacks with eements
for which an appropriate type conversion is defined. To do thisyou have to declare Stack<> asfollows:

/'l basi cs/ stack5decl . hpp

tenpl ate <typename T>
class Stack {

private:
st d: : deque<T> el ens; /1 elenents
public:
voi d push(T const&); /'l push el enent
voi d pop(); /'l pop el emrent
T top() const; /1 return top el enent

bool empty() const { /1 return whether the stack is enpty
return el ens. enpty();

}

/1 assign stack of elenents of type T2
templ ate <typename T2>
St ack<T>& operator= (Stack<T2> const &) ;

H
The following two changes have been made:
1.

We added a declaration of an assignment operator for stacks of e ements of another type T2.

The stack now uses adeque as an internal container for the elements. Again, thisis a consequence of the
implementation of the new assgnment operator.

Theimplementation of the new assgnment operator lookslikethis:

/'l basi cs/ stackb5assi gn. hpp

tenpl ate <typenane T>
tam! ate <t vhenanmne T2>









5.4 Template Template Parameters

It can be useful to dlow atemplate parameter itsdlf to be aclasstemplate. Again, our stack classtemplate can be
used as an example.

To useadifferent internal container for stacks, the application programmer has to specify the eement type twice.
Thus, to specify the type of theinterna container, you have to passthe type of the container and the type of its
dementsagain:

Stack<int,std::vector<int> > vStack; // integer stack that uses a vector

Using template template parameters dlows you to declare the Stack class template by specifying the type of the
container without respecifying the type of itsdements:

stack<int,std::vector> vStack; /1 integer stack that uses a vector

To do thisyou must specify the second template parameter as atemplate template parameter. In principle, thislooks
asfollows[2]:

[2] Thereisaproblem with thisversion that we explain in aminute. However, this problem affects only the default
vaue d::deque. Thus, we can illugtrate the genera features of template template parameters with this example.

/'l basics/ stack7decl . hpp

tenpl ate <typenane T,
tenpl ate <typenane ELEM> class CONT = std::deque >
class Stack {

private:
CONT<T> el ens; /1 elements
public:
voi d push(T const&); /'l push el ement
voi d pop(); /1 pop el ement
T top() const; /1 return top el enent

bool enmpty() const { /1 return whether the stack is enpty
return el ens. enpty();
}

H
The difference is that the second template parameter is declared as being aclasstemplate:

tenpl ate <typenanme ELEM> cl ass CONT

The default value has changed from std::deque<T> to std::deque. This parameter hasto be aclasstemplate, whichis
ingtantiated for the type that is passed asthe first template parameter:

CONT<T> el ens;
Thisuse of thefirgt template parameter for the ingtantiation of the second template parameter is particular to this

example. In generd, you can indantiate a template template parameter with any type indde a classtemplate.

Asusud, instead of typename you could use the keyword class for template parameters. However, CONT isused to
define aclass and must be declared by using the keyword class. Thus, thefollowing isfine:

+armml at A ~tvimanarmrm T
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55 ZerolInitialization

For fundamental types such asint, double, or pointer types, thereis no default constructor that initializesthem with a
useful default value. Instead, any noninitidized locd variable has an undefined value:

voi d foo()

{

int x; /1 x has undefined val ue
int* ptr; // ptr points to somewhere (instead of nowhere)

}

Now if you write templates and want to have variables of atemplate typeinitidized by a default value, you have the
problem that a smple definition doesn't do thisfor built-in types:

tenpl ate <typenane T>

voi d foo()
{

T X; /1 x has undefined value if T is built-in type
}

For thisreason, itispossibleto cal explicitly adefault congtructor for built-in types that initializes them with zero (or
fasefor bool). That is, int() yields zero. As aconsequence you can ensure proper default initidization even for built-in

types by writing the following:

tenpl ate <typenane T>

voi d foo()
{

Tx =T(),; [/l x is zero (or false)ifTis a built-in type
}

To make sure that amember of aclasstemplate, for which the type is parameterized, getsinitidized, you haveto
define adefault congtructor that usesaninitidizer lig to initidize the member:

tenpl ate <typename T>
class Myd ass {
private:
T x;
public:
MyClass() : x() { // ensures that x is initialized even for built-in types

}

}s
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5.6 Using String Literalsas Argumentsfor Function Templates

Passng gtring litera argumentsfor reference parameters of function templates sometimesfailsin asurprisng way.
Consder thefollowing example:

/'l basi cs/ max5. cpp
#i ncl ude <string>
/'l note: reference paraneters

tenpl ate <typenanme T>
inline T const& max (T const& a, T const& b)

{
return a <b ? b : a;
}
int main()
{
std::string s;
::max("appl e", "peach"); /] OK sane type
crmax("apple”,"tomato"); // ERROR different types
©rmax("apple”,s); /1 ERROR: different types
}

The problem isthat string literds have different array types depending on their lengths. Thet is, "gpple”’ and "peach”
have type char const[6] whereas "tomato” hastype char const[7]. Only thefirst call is possible because the template
expects both parameters to have the same type. However, if you declare nonreference parameters, you can
subdtitute them with gring literds of different Sze:

/'l basi cs/ max6. cpp
#i ncl ude <string>
/'l note: nonreference paraneters

tenpl ate <typename T>
inline T max (T a, T b)

{
return a<b ?b: a
}
int main()
{
std::string s;
Do max("appl e", "peach"); I/ OK sane type
crmax("apple","tomato"); // OK decays to sanme type
Do max("apple",s); /1 ERROR different types
}

The explanation for this behavior isthat during argument deduction array-to-pointer conversion (often caled decay)
occursonly if the parameter does not have areference type. Thisis demonstrated by the following program:

/'l basics/refnonref.cpp

#i ncl ude <typei nfo>
#i ncl ude <i ostreane

tenpl ate <typenane T>
void ref (T const& x)
{

std::cout << "x in ref(T const&)
cc tvnel Adl(vY) nanmel(l << '\n' -
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5.7 Summary
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To access atype name that depends on atemplate parameter, you have to qualify the name with aleading
typename.

Nested classes and member functions can aso be templates. One application isthe ability to implement
generic operations with interna type conversions. However, type checking still occurs.

Template versions of assignment operators don't replace default assignment operators.

Y ou can aso use class templates as templ ate parameters, as so-cdled template template parameters.

Template template arguments must match exactly. Default template arguments of template template
argumentsareignored.

By explicitly caling adefault constructor, you can make sure that variables and members of templates are
initidized by adefault vadue evenif they are indantiated with abuilt-in type.

For gtring literd s there is an array-to-pointer conversion during argument deduction if and only if the
parameter is not areference.
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Chapter 6. Using Templatesin Practice

Template codeisalittle different from ordinary code. In some ways templates lie somewhere between macros and
ordinary (nontemplate) declarations. Although this may be an oversmplification, it has consequences not only for the
way we write algorithms and data structures using templates, but aso for the day-to-day logistics of expressing and
andyzing programsinvolving templates.

In this chapter we address some of these practicdlities without necessarily delving into the technica detalsthat
underlie them. Many of these details are explored in Chapter 10. To keep the discusson smple, we assume that our
C++ compilation systems conss of fairly traditional compilersand linkers (C++ systemsthat don't fal in this
category are quiterare).

Ru-Brd






6.1 Thelncluson M oddl

There are severa ways to organize template source code. This section presents the most popular approach as of the
timeof thiswriting: the indluson modd.

6.1.1Linker Errors

Mogt C and C++ programmers organi ze their nontemplate code largely asfollows:

Classes and other types are entirely placed in header files. Typicaly, thisisafilewith a.hpp (or .H, .h, .hh,
.hxx) filename extenson.

For globa variables and (noninline) functions, only adeclaration is put in aheader file, and the definition goes
into aso-caled dot-C file. Typicaly, thisisafilewith a.cpp (or .C, .c, .cc, or .hxx) filename extension.

Thisworkswell: It makes the needed type definition easily available throughout the program and avoids duplicate
definition errors on variables and functions from the linker.

With these conventionsin mind, acommon error about which beginning template programmers complainisillustrated
by the following (erroneous) little program. Asusud for "ordinary code," we declare the template in aheader file:

/'l basics/nyfirst. hpp

#i f ndef MYFI RST_HPP
#defi ne MYFI RST_HPP

/1 declaration of tenplate
tenpl ate <typenane T>
void print_typeof (T const&)

#endi f // MYFI RST_HPP

print_typeof() isthe declaration of asmple auxiliary function that prints some type information. The implementation of
thefunctionisplaced in adot-Cfile:

/'l basics/nmyfirst.cpp

#i ncl ude <i ostreanp
#i ncl ude <typei nfo>
#i ncl ude "nyfirst. hpp"

/1 inmplementation/definition of tenplate
tenpl ate <typename T>
void print_typeof (T consté& x)

{
}

std::cout << typeid(x).nane() << std::endl

The example uses the typeid operator to print astring that describes the type of the expression passed to it (see
Section 5.6 on page 58).









6.2 Explicit I nstantiation

Theincluson modd ensuresthat al the needed templates are instantiated. This happens because the C++
compilation system automeatically generates those instantiations as they are needed. The C++ standard aso offersa
congtruct to ingtantiate templates manually: the explicit ingtantiation directive.

6.2.1 Example of Explicit I nstantiation

Toillustrate manud ingtantiation, let's revisit our origina examplethat leadsto alinker error (see page 62). To avoid
thiserror we add the following file to our program:

/'l basics/nmyfirstinst.cpp
#i ncl ude "nyfirst.cpp"

/1 explicitly instantiate print_typeof() for type double
tenpl ate void print_typeof <doubl e>(doubl e const &) ;

The explicit ingtantiation directive consgts of the keyword template followed by the fully substituted declaration of the
entity we want to ingtantiate. In our example, we do thiswith an ordinary function, but it could be amember function
or agtatic datamember. For example:

/1 explicitly instantiate a constructor of Myd ass<> for int
tenpl ate MyC ass<int>:: Md ass();

I/ explicitly instantiate a function tenplate max() for int
tenplate int const& nmax (int const& int const&);

Y ou can dso explicitly ingtantiate a classtemplate, which is short for requesting the ingtantiation of dl itsingtantiatable
members. This excludes membersthat were previoudy specialized aswell asthose that were already instantiated:

/1l explicitly instantiate class Stack<> for int:
tenpl ate cl ass Stack<int>;

/1l explicitly instantiate sone nenber functions of Stack<> for strings:
tenpl ate Stack<std::string>::Stack();

tenpl ate void Stack<std::string>::push(std::string constg&);

tenplate std::string Stack<std::string>: :top();

/1 ERROR can't explicitly instantiate a nenber function of a
/1 class that was itself explicitly instantiated:
tenpl ate Stack<int>::Stack();

There should be, a most, one explicit instantiation of each digtinct entity in aprogram. In other words, you could
explicitly ingtantiate both print_typeof<int>and print_typeof<double>, but each directive should appear only oncein
aprogram. Not following thisrule usudly resultsin linker errors that report duplicate definitions of the instantiated
entities

Manuad ingantiation has a clear disadvantage: We must carefully keep track of which entitiesto ingtantiate. For large
projects this quickly becomes an excessive burden; hence we do not recommend it. We have worked on severa
projectsthat initialy underestimated this burden, and we came to regret our decision as the code matured.

However, explicit instantiation also has afew advantages because the instantiation can be tuned to the needs of the
program. Clearly, the overhead of large headersis avoided. The source code of template definition can be kept
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6.3 The Separation Model

Both approaches advocated in the previous sections work well and conform entirely to the C++ standard. However,
this same standard al so provides the aternative mechanism of exporting templates. This approach issometimes caled
the C++ templ ate separation model.

6.3.1 The Keyword export

Inprinciple, it is quite smpleto make use of the export facility: Define the template in just onefile, and mark that
definition and dl its nondefining declarations with the keyword export. For the example in the previous section, this
resultsin the following function template declaration:

/'l basics/ nmyfirst3. hpp

#i f ndef MYFI RST_HPP
#def i ne MYFI RST_HPP

/1 declaration of tenplate
export

tenpl ate <typenane T>

void print_typeof (T const&)

#endi f // MYFI RST_HPP

Exported templates can be used without their definition being visible. In other words, the point where atemplateis
being used and the point whereit is defined can bein two different trand ation units. In our example, thefile
myfirst.npp now contains only the declaration of the member functions of the classtemplate, and thisis sufficient to
use those members. Comparing thiswith the origina code that was triggering linker errors, we had to add only one
export keyword in our code and things now work just fine.

Within apreprocessed file (that is, within atrandation unit), it is sufficient to mark thefirst declaration of atemplate
with export. Later redeclarations, including definitions, implicitly keep that attribute. Thisiswhy myfirst.cpp does not
need to be modified in our example. The definitionsin thisfile areimplicitly exported because they were so declared
in the #included header file. On the other hand, it is perfectly acceptable to provide redundant export keywords on
template definitions, and doing so may improve the readability of the code.

The keyword export redly gppliesto function templates, member functions of class templates, member function
templates, and static data members of class templates. export can aso be gpplied to a class template declaration. It
impliesthat every one of its exportable membersis exported, but class templates themselves are not actudly
exported (hence, their definitions still appear in header files). Y ou can gill haveimplicitly or explicitly defined inline
member functions. However, these inline functions are not exported:

export tenplate <typenane T>
class MO ass {

public:
voi d nmenfunl(); /'l exported
void menfun2() { /1 not exported because inplicitly inline
voi d menfun3(); /'l not exported because explicitly inline

}s

tenpl ate <typenane T>
inline void M/Cl acs<T> " nenf 1un* ()
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6.4 Templatesand inline

Declaring short functions to beinlineisacommon tool to improve the running time of programs. Theinline specifier
indicates to the implementation that inline substitution of the function body &t the point of call ispreferred over the
usua function cal mechanism. However, animplementation is not required to perform thisinline substitution at the
point of call.

Both function templates and inline functions can be defined in multiple trandation units. Thisisusudly achieved by
placing the definition in a header file that isincluded by multiple dot-Cfiles.

Thismay lead to the impression that function templates are inline by default. However, they're not. If you write
function templates that should be handled asinline functions, you should use the inline specifier (unlessthefunction is
inline dready becauseit is defined ingde a class definition).

Therefore, many short template functions that are not part of aclass definition should be declared with inline. [3]

[3] We may not dways apply thisrule of thumb because it may distract from the topic at hand.
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6.5 Precompiled Headers

Even without templates, C++ header files can become very large and therefore take along time to compile.
Templates add to this tendency, and the outcry of waiting programmers has in many cases driven vendorsto
implement a scheme usually known as precompiled headers. This scheme operates outside the scope of the standard
and relies on vendor-specific options. Although we leave the details on how to create and use precompiled header
filesto the documentation of the various C++ compilation systemsthat have thisfeature, it isuseful to gain some
understanding of how it works.

When acompiler trandates afile, it does so sarting from the beginning of the file and works through to the end. Asit
processes each token from the file (which may come from #included files), it adaptsitsinterna state, including such
things as adding entries to atable of symbols so they may be looked up later. While doing o, the compiler may dso
generate code in object files.

The precompiled header scheme relies on the fact that code can be organized in such amanner that many files start
with the samelines of code. Let's assume for the sake of argument that every file to be compiled starts with the same
N lines of code. We could compile these N lines and save the compl ete state of the compiler at that pointina
so-called precompiled header. Then, for every filein our program, we could reload the saved state and start
compilation a line N+1. At this point it is worthwhile to note that reloading the saved state is an operation that can be
orders of magnitude fagter than actualy compiling thefirst N lines. However, saving the statein thefirst placeis
typicaly more expensive than just compiling the N lines. Theincreasein cost varies roughly from 20 to 200 percent.

The key to making effective use of precompiled headersisto ensure that—as much as possible— files start with a
maximum number of common lines of code. In practice this meansthe files must start with the same#include
directives, which (as mentioned earlier) consume asubstantia portion of our build time. Hence, it can be very
advantageous to pay attention to the order in which headers are included. For example, the following two files

#i ncl ude <i ostreant
#i ncl ude <vector>
#i ncl ude <list>

and

#i ncl ude <list>
#i ncl ude <vector>

inhibit the use of precompiled headers because thereis no common initial statein the sources.

Some programmers decide that it is better to #nclude some extra unnecessary headers than to passon an
opportunity to accelerate the trandation of afile usng a precompiled header. This decision can considerably easethe
management of theincluson policy. For example, it isusudly rdatively straightforward to create aheader file named
std.hpp that includes dl the standard headers [4]:

[4] In theory, the standard headers do not actually need to correspond to physical files. In practice, however, they
do, and thefilesare very large.

#i ncl ude <i ostreane
#i ncl ude <string>
#i ncl ude <vect or >









6.6 Debugging Templates

Templates raise two classes of chalengeswhen it comesto debugging them. One set of chdlengesisdefinitely a
problem for writers of templates: How can we ensure that the templates we write will function for any template
arguments that satisfy the conditions we document? The other class of problemsis amost exactly the opposite: How
can auser of atemplate find out which of the template parameter requirementsit violated when the templ ate does not
behave as documented?

Before we discussthese issuesin depth, it is useful to contemplate the kinds of congtraints that may be imposed on
template parameters. In this section we dedl mostly with the congtraints that lead to compilation errors when violated,
and we call these congtraints syntactic congtraints. Syntactic constraints can include the need for a certain kind of
congtructor to exigt, for aparticular function cal to be unambiguous, and so forth. The other kind of constraint we call
semantic condraints. These congtraints are much harder to verify mechanicaly. Inthe generd case, it may not even
be practical to do s0. For example, we may require that there be a < operator defined on atemplate type parameter
(whichisasyntactic congtraint), but usualy well aso require that the operator actualy defines some sort of ordering
onitsdomain (which isasemantic congraint).

The term concept i s often used to denote a set of constraints that is repeetedly required in atemplate library. For
example, the C++ standard library relies on such concepts as random access iterator and default constructible.
Concepts can form hierarchiesin the sense that one concept can be arefinement of another. The more refined
concept includes al the constraints of the other concept but adds afew more. For example, the concept random
accessiterator refines the concept bidirectiond iterator in the C++ standard library. With thisterminology in place,
we can say that debugging template code includes a significant amount of determining how concepts are violated in
the template implementation and in their use.

6.6.1 Decoding the Error Novel

Ordinary compilation errors are normally quite succinct and to the point. For example, when acompiler says"class X

has no member 'fun’,” it usualy isn't too hard to figure out what iswrong in our code (for example, we might have
mistyped run asfun). Not so with templates. Consder the following relaively smple code excerpt using the C++
gandard library. It contains afairly smal mistake: list<string> is used, but we are searching using agreater<int>
function object, which should have been a greater<string> object:

std::list<std::string> coll

/'l Find the first elenment greater than "A"

std::list<std::string>: :iterator pos;

pos = std::find_if(coll.begin(),coll.end(), /'l range
std:: bind2nd(std::greater<int>(),"A")); // criterion

This sort of mistake commonly happens when cutting and pasting some code and forgetting to adapt parts of it.

A verson of the popular GNU C++ compiler reports the following error:

/local /include/stl/_algo.h: In function '"struct _STL::_ List_iterator<_STL::basic
_string<char, _STL::char_traits<char>, _STL::allocator<char> >, _STL::_Nonconst _tra
its<_STL::basic_string<char, _STL::char_traits<char>, STL::allocator<char> > > >

_STL::find_if<_STL::_List_iterator<_STL::basic_string<char, STL::char_traits<cha
r>, _STL::allocator<char> >, _STL::_ Nonconst _traits<_STL::basic_string<char, _STL:

char _traits<char>, STL::allocator<char> > > > STL:: bi nder 2nd<_STL: : gr eat er <i nt
> > >(_STL:: _List_iterator<_STL::basic_string<char, _STL::char_traits<char>, STL:
;allocator<char> >, STL:: Nonconst _traits< STL::basic_string<char, STL::char _tra
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6.7 Afternotes

The organization of source code in header files and dot-C filesisapractical consequence of various incarnations of
the so-caled one-definition rule or ODR. An extensive discussion of thisruleis presented in Appendix A.

Theinclusion versus separation mode debate has been acontroversia one. Theinclusion model isapragmatic
answer dictated largdly by exigting practice in C++ compiler implementations. However, the first C++ implementation
was different: Theinclusion of template definitions wasimplicit, which crested acertainilluson of separation (see
Chapter 10 for detailson thisorigina modd).

[StroustrupDnE] contains agood presentation of Stroustrup's vision for template code organization and the
associated implementation challenges. It clearly wasn't theincluson moddl. Y e, at some point in the standardization
process, it seemed asif the inclusion mode wasthe only viable approach after dl. After some intense debates,
however, those envisioning amore decoupled modd garnered sufficient support for what eventualy becamethe
separation mode. Unlike theinclusion modd, thiswas atheoretical model not based on any existing implementation.
It took more than five yearsto seeitsfirst implementation published (May 2002).

It is sometimes tempting to imagine ways of extending the concept of precompiled headers so that more than one
header could be loaded for asingle compilation. Thiswould in principle allow for afiner grained approach to
precompilation. The obstacle hereismainly the preprocessor: Macrosin one header file can entirely change the
meaning of subsequent header files. However, once afile has been precompiled, macro processing is completed, and
itishardly practica to attempt to patch a precompiled header for the preprocessor effectsinduced by other headers.

A fairly systemdtic attempt to improve C++ compiler diagnostics by adding dummy codein high-level templates can
be found in Jeremy Siek's Concept Check Library (see [ BCCL]). It ispart of the Boost library (see [ Boost]).
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6.8 SUmmary
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Templates challenge the classic compiler-plus-linker moddl. Therefore there are different gpproachesto
organize template code: theinclusion modd, explicit instantiation, and the separation mode!.

Usudly, you should usetheincluson mode (that is, put al template code in header files).

By separating template code into different header filesfor declarations and definitions, you can more easily
switch between theincluson mode and explicit ingtantiation.

The C++ standard defines a separate compilation model for templates (using the keyword export). It isnot
yet widely available, however.

Debugging code with templates can be chalenging.

Template instances may have very long names.

To take advantage of precompiled headers, be sure to keep the same order for #include directives.
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Chapter 7. Basic Template Terminology

So far we have introduced the basic concept of templatesin C++. Before we go into details, let'slook at the terms of
the concepts we use. Thisis necessary because, ingde the C++ community (and even in the standard), thereisalack
of precision regarding concepts and terminology.
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7.1" Class Template' or " Template Class' ?

In C++, gtructs, classes, and unions are collectively called class types. Without additional qualification, theword
"class' in plain text type is meant to include class types introduced with either the keyword class or the keyword
struct. [1] Note specificaly that "classtype" includes unions, but "class' does not.

[1] In C++, the only difference between class and struct isthat the default accessfor classis private whereas the
default accessfor struct is public. However, we prefer to use classfor typesthat use new C++ features, and we use
sruct for ordinary C data structure that can be used as"plain old data" (POD).

Thereis some confusion about how aclassthat isatemplateis caled:

Theterm classtemplate Satesthat the classisatemplate. That is, it isaparameterized description of afamily
of classes.

The term template class on the other hand has been used

- asasynonym for classtemplate.
- to refer to classes generated from templates.

- torefer to classes with aname that is atemplate-id.

The difference between the second and third meaning is somewhat subtle and unimportant for the remainder of the
text.

Because of thisimprecision, we avoid the term template classin this book.

Similarly, we use function template and member function template, but avoid template function and template member
function.
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7.2 Instantiation and Specialization

The process of creating aregular class, function, or member function from atemplate by substituting actual vauesfor
itsargumentsis caled template ingtantiation. This resulting entity (class, function, or member function) isgenericaly
caled aspecidization.

However, in C++ the ingtantiation processis not the only way to produce a pecidization. Alternative mechanisms
alow the programmer to specify explicitly adeclaration that istied to agpecia subgtitution of template parameters.
Asweintroduced in Section 3.3 on page 27, such aspecidization isintroduced by template<>:

tenpl ate <typenane T1l, typenane T2> [l primary class tenplate
class Myd ass {

H

tenpl at e<> /] explicit specialization

class Myd ass<std::string,float> {

H

Strictly speaking, thisis called aso-called explicit specidization (as opposed to an ingantiated or generated
Specidization).

Asintroduced in Section 3.4 on page 29, specidizationsthat ill have template parameters are called partia
oecidizations:

tenpl ate <typenane T> /1 partial specialization
class M/d ass<T, T> {

H

tenpl ate <typenane T> /1 partial specialization
cl ass Myd ass<bool , T> {

H

When taking about (explicit or partid) specidizations, the generd template isaso called the primary template.
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7.3 Declar ations ver sus Definitions

So far, the words declaration and definition have been used only afew timesin this book. However, these words
carry with them arather precise meaning in standard C++, and that is the meaning that we use.

A declaration isa C++ construct that introduces or reintroduces a nameinto a C++ scope. Thisintroduction always
includes apartid classfication of that name, but the details are not required to make avalid declaration. For example:

class C // a declaration of C as a cl ass
void f(int p); // a declaration of f() as a function and p as a naned paraneter
extern int v; /!l a declaration of v as a variable

Note that even though they have a"name," macro definitions and goto labels are not considered declarationsin C++.

Declarations become definitions when the details of their structure are made known or, in the case of variables, when
storage space must be alocated. For class type and function definitions, this means a brace-enclosed body must be
provided. For variables, initializations and amissing extern lead to definitions. Here are examples that complement the
preceding nondefinition declarations:

class C {}; /1 definition (and declaration) of class C

void f(int p) { /1 definition (and declaration) of function f()
std::cout << p << std::endl;

}

externint v =1; [// an initializer makes this a definition for v

int w /1 gl obal variable declarations not preceded by
/1 extern are also definitions

By extenson, the declaration of aclasstemplate or function template is called adefinition if it has abody. Hence,

tenpl ate <typename T>
void func (T);

isadeclaration that is not adefinition, whereas

tenpl ate <typename T>
class S {};

isin fact adefinition.
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7.4 The One-Definition Rule

The C++ language definition places some congtraints on the redeclaration of various entities. The totdity of these
congraintsis known as the one-definition rule or ODR. The details of thisrule are quite complex and span alarge
variety of stuations. Later chaptersillustrate the various resulting facets in each gpplicable context, and you can find a
complete description of the ODR in Appendix A. For now, it suffices to remember the following ODR basics:

Noninline functions and member functions, aswel as globd variables and static data members should be
defined only once across the whole program.

Classtypes (including structs and unions) and inline functions should be defined at most once per trandation
unit, and al these definitions should beidentical.

A trandation unit iswhat results from preprocessing asourcefile; that is, it includes the contents named by #include
directives.

In the remainder of thisbook, linkable entity means one of the following: anoninline function or member function, a
globa variable or a static data member, including any such things generated from atemplate.
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7.5 Template Arguments versus Template Parameters

Comparethefollowing classtemplate

tenpl ate <typenane T, int N>
class ArraylnC ass {
public:
T array[ N ;
H

withasmilar planclass

cl ass Doubl eArrayl nCl ass {
public:
doubl e array[ 10];
b

The latter becomes essentialy equivalent to the former if we replace the parameters T and N by double and 10
respectively. In C++, the name of this replacement is denoted as

Arrayl nCl ass<doubl e, 10>

Note how the name of the template is followed by so-cdled template argumentsin angle brackets.

Regardiess of whether these arguments are themsal ves dependent on template parameters, the combination of the
template name, followed by the argumentsin angle brackets, is caled atemplate-id.

This name can be used much like a corresponding nontempl ate entity would be used. For example:

int main()

{
Arrayl nC ass<doubl e, 10> ad;

ad.array[0] = 1.0;
}

It isessentid to distinguish between template parameters and template arguments. In short, you can say that you
"pass arguments to become parameters.” [2] Or more precicely:

[2] In the academic world, arguments are sometimes called actual parameters whereas parameters are called formal
parameters.

Template parameters are those names that are listed after the keyword template in the template declaration
or definition (T and N in our example).

Template arguments are the items that are substituted for template parameters (double and 10 in our
example). Unlike template parameters, template arguments can be more than just "names.”

The subdtitution of template parameters by template argumentsis explicit when indicated with atemplate-id, but there
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Part |1: Templatesin Depth

Thefirst part of thisbook provided atutorial for most of the language concepts underlying C++ templates. That
presentation is sufficient to answer the mgjority of questionsthat may arisein everyday C++ programming. The
second part of thisbook provides areference that answers even the more unusual questions that arise when pushing
the envel ope of the language to achieve some advanced software effect. If desired, you can skip this part on afirst
read and return to specific topics as prompted by referencesin later chapters or after looking up aconcept in the
index.

Our goal isto be clear and complete, but aso to keep the discussion concise. To thisend, our examples are short
and often somewhat artificial. Thisaso ensuresthat we don't stray from the topic at hand to unrelated issues.

In addition, welook at possible future changes and extensions for the templateslanguage feature in C++. Topics
indude

Fundamentd template declaration issues
The meaning of namesin templates

The C++ template instantiation mechanisms
The template argument deduction rules
Specidization and overloading

Future possibilities
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Chapter 8. Fundamentalsin Depth

In this chapter we review some of the fundamentalsintroduced in the first part of thisbook in depth: the declaration
of templates, the restrictions on template parameters, the congtraints on template arguments, and so forth.
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8.1 Parameterized Declar ations

C++ currently supports two fundamenta kinds of templates: class templates and function templates (see Section 13.6
on page 212 for apossible future change in this areq). This classification includes member templates. Such templates
are declared much like ordinary classes and functions, except for being introduced by a parameterization clause of
theform

tenpl ate< paraneters here >

or perhaps

export tenplate< paraneters here >

(see Section 6.3 on page 68 and Section 10.3.3 on page 149 for a detailed explanation of the keyword export).
Well come back to the actua template parameter declarationsin alater section. An exampleillustrates the two kinds
of templates, both as class members and as ordinary namespace scope declarations:

tenpl ate <typenane T>

class List { /1 a namespace scope class tenplate
public:
tenpl ate <typenane T2> /1 a menber function tenplate
Li st (List<T2> const&); /1 (constructor)
b

tenpl ate <typenane T>

tenpl ate <typenane T2>

Li st<T>::List (List<T2> const& b) // an out-of-class menber function
{ [/ tenplate definition

}

tenpl ate <typenane T>
int length (List<T> const&); /1 a namespace scope function tenplate

class Collection {

tenpl ate <typenane T> /1 an in-class nmenber class tenplate
cl ass Node { /1 definition
H
tenpl ate <typenane T> /1 anot her nenber class tenplate,
cl ass Handl e; /1 without its definition
tenpl ate <typenane T> /1 an in-class (and therefore inplicitly
T* alloc() { /1 inline) nenber function tenplate
/1 definition
}
b
tenpl ate <typenane T> /1 an out-of-class nenber class
class Coll ection:: Node { [l tenplate definition
b

Note how member templates defined outside their enclosing class can have multiple template< > parameterization
clauses: onefor the template itsalf and one for every enclosing classtemplate. The clauses arelisted starting from the
outermost classtemplate.









8.2 Template Parameters

There are three kinds of template parameters.
1

Type parameters (these are by far the most common)

Nontype parameters

Template template parameters

Template parameters are declared in the introductory parameterization clause of atemplate declaration. Such
declarations do not necessarily need to be named:

tenpl ate <typenane, int>
class X;

A parameter nameis, of course, required if the parameter isreferred to later in the template. Note also that a
template parameter name can be referred to in a subsequent parameter declaration (but not before):

tenpl ate <typenane T, /1 the first parameter is used in the
T* Root, /1 declaration of the second one and
tenpl at e<T*> class Buf> // the third one

class Structure;

8.2.1 Type Parameters

Type parameters are introduced with either the keyword typename or the keyword class: The two are entirely
equivaent. [2] The keyword must be followed by asmpleidentifier and that identifier must be followed by acomma
to denote the start of the next parameter declaration, a closing angle bracket (>) to denote the end of the
parameterization clause, or an equal sign (=) to denote the beginning of a default template argument.

[2] The keyword class does not imply that the substituting argument should be aclasstype. It could be dmost any
accessible type. However, classtypesthat are defined in afunction (local classes) cannot be used astemplate
arguments (independent of whether the parameter was declared with typename or class).

Within atemplate declaration, atype parameter acts much like atypedef name. For example, it isnot possibleto use
an daborated name of theform class T when T isatemplate parameter, evenif T wereto be subgtituted by aclass

type:

tenpl ate <typenane All ocator>

class List {
class Allocator* allocator; // ERROR
friend class Allocator; /1 ERROR

}s

It ispossible that amechanism to enable such afriend declaration will be added in the future.









8.3 Template Arguments

Template arguments are the "vaues' that are subgtituted for template parameters when ingtantiating atemplate. These
vaues can be determined using severd different mechanisms

Explicit template arguments. A template name can be followed by explicit template argument vaues enclosed
in angle brackets. The resulting nameis called atemplate-id.

Injected class name: Within the scope of a classtemplate X with template parameters P1, P2, , the name of
that template (X) can be equivalent to the template-id X<P1, P2, >. See Section 9.2.3 on page 126 for
detalls.

Default template arguments. Explicit template arguments can be omitted from class template instancesiif
default template arguments are available. However, evenif dl template parameters have a default vaue, the
(possibly empty) angle brackets must be provided.

Argument deduction: Function template argumentsthat are not explicitly specified may be deduced from the
typesof the function call argumentsinacal. Thisisdescribed in detail in Chapter 11. Deduction isaso done
in afew other stuations. If al the template arguments can be deduced, no angle brackets need to be
specified after the name of the function template.

8.3.1 Function Template Arguments

Template arguments for afunction template can be specified explicitly or deduced from the way the templateis used.
For example:

/1 detail s/ max.cpp

tenpl ate <typenane T>
inline T const& nax (T const& a, T const& b)

{
}

return a<b?b: a;

int main()

{
max<doubl e>(1.0, -3.0); // explicitly specify tenplate argunent

max(1.0, -3.0); /1 tenplate argunent is inplicitly deduced
/1 to be double
max<i nt>(1.0, 3.0); /1l the explicit <int> inhibits the deduction

/1 hence the result has type int

}

Some template arguments can never be deduced (see Chapter 11). The corresponding parameters are best placed at
the beginning of thelist of template parameters so they can be specified explicitly while allowing the other arguments
to be deduced. For example:









8.4 Friends

The basicideaof friend declarationsisasimple one: Identify classes or functions that have a privileged connection
with the classin which the friend declaration appears. Matters are somewhat complicated, however, by two facts.

1.

A friend declaration may be the only declaration of an entity.

A friend function declaration can be adefinition.

Friend class declarations cannot be definitions and therefore are rardly problematic. In the context of templates, the
only new facet of friend class declarationsisthe ability to name aparticular insgtance of aclasstemplate asafriend:

tenpl ate <typenane T>
cl ass Node;

tenpl ate <typenane T>
class Tree {
friend class Node<T>

}s

Note that the class template must be visible at the point where one of itsinstancesis made afriend of aclassor class
template. With an ordinary class, there is no such requirement:

tenpl ate <typename T>

class Tree {
friend class Factory; /1 OK, even if first declaration of Factory
friend class class Node<T>;, // ERROR if Node isn't visible

H
Section 9.2.2 on page 125 has more to say about this.

8.4.1 Friend Functions

An ingtance of afunction template can be made afriend by making sure the name of the friend function isfollowed by
angle brackets. The angle brackets can contain the template arguments, but if the arguments can be deduced, the
angle brackets can be left empty:

tenpl ate <typenane T1, typename T2>
voi d conbi ne(T1, T2);

class Mxer {

friend void conmbine<>(int& int&)

/Il K Tl =int& T2 =int&
friend void conbine<int, int>(int, int);

// OK Tl =int, T2 = int
friend void conbi ne<char>(char, int);

/1 OK: T1 = char T2
friend void conbi ne<char>(char&, int);

/1 ERROR: doesn't match conbine() tenplate
friend void conbi ne<>(long, long) { }

/! ERROR: definition not allowed!

i nt
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8.5 Afternotes

The generd concept and syntax of C++ templates have remained relatively stable sncetheir inception in the late
1980s. Class templates and function templates were part of theinitiad template facility. So were type parameters and
nontype parameters.

However, there were d so some significant additionsto the origina design, mostly driven by the needs of the C++
standard library. Member templates may well be the most fundamenta of those additions. Curioudy, only member
function templates were formaly voted into the C++ standard. Member class templates became part of the standard
by an editoria oversght.

Friend templates, default template arguments, and template template parameters are o relatively recent additionsto
thelanguage. The ability to declare template template parametersis sometimes called higher-order genericity. They
were originally introduced to support a certain alocator model in the C++ standard library, but that allocator model
was later replaced by one that does not rely on template template parameters. Later, template template parameters
came close to being removed from the language because their specification had remained incomplete until very latein
the standardi zation process. Eventualy amgority of committee members voted to keep them and their specifications
were compl eted.
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Chapter 9. Namesin Templates

Names are afundamental concept in most programming languages. They are the means by which a programmer can
refer to previoudy congtructed entities. When a C++ compiler encounters aname, it must "look it up” to identify to
which entity isbeing referred. From an implementer's point of view, C++ isahard language in this respect. Consider
the C++ statement x*y; .Ifx and y are the names of variables, this statement isamultiplication, but if x isthe name of
atype, then the statement declaresy as a pointer to an entity of type x.

Thissmall example demongtrates that C++ (like C) isa so-caled context-sengitive language: A construct cannot
always be understood without knowing its wider context. How does this relate to templates? Well, templates are
congtructs that must deal with multiple wider contexts: (1) the context in which the template appears, (2) the context
in which the templateisingtantiated, and (3) the contexts associated with the template arguments for which the
template isingantiated. Hence it should not betotally surprising that "names' must be dedt with quite carefully in
C++.
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9.1 Name Taxonomy

C++ dlassfiesnamesin avariety of ways—alarge variety of waysin fact. To help cope with this abundance of
terminology, we providetables Table 9.1 and Table 9.2, which describe these classifications. Fortunately, you can
gain good ingght into most C++ template issues by familiarizing yoursdlf with two mgor naming concepts:

1.

A nameisaqudified nameif the scopeto which it belongsis explicitly denoted using a scoperesolution
operator (::) or amember access operator (. or ->). For example, this->count is a qualified name, but count
is not (even though the plain count might actudly refer to a class member).

A nameisadependent nameif it dependsin some way on atemplate parameter. For example,
sd::vector<T>::iterator isadependent nameif T isatemplate parameter, but it is a nondependent nameif T

isaknown typedef (for example, of int).

Table 9.1. Name Taxonomy (part one)

Classification

|dentifier

Operator-function-id

Converson-function-id

Template-id

Explanation and Notes

A namethat conssts solely of an uninterrupted sequences
of letters, underscores () and digits. It cannot start with
adigit, and someidentifiers are reserved for the
implementation: Y ou should not introduce them in your
programs (asarule of thumb, avoid leading underscores
and double underscores). The concept of "letter" should
be taken broadly and includes specia universa character
names (UCNs) that encode glyphs from nonal phabetica

languages.

The keyword operator followed by the symbol for an
operator— for example, operator new and operator [ ].
Many operators have aternative representations. For
example, operator & can equivaently be written as
operator bitand even when it denotes the unary address
of operator.

Used to denote user-defined implicit conversion
operator—for example operator int& , which could aso
be obfuscated as operator int bitand.

The name of atemplate followed by template arguments
enclosed in angle brackets; for example, List<T, int, 0>.
(Strictly speaking, the C++ standard dlows only smple
identifiersfor the template name of atemplate-id.
However, thisis probably an oversght and an









9.2 Looking Up Names

There are many small detailsto looking up namesin C++, but we will focus only on afew mgor concepts. The
details are necessary to ensure only that (1) normal cases are treated intuitively, and (2) pathologica casesare
covered in someway by the standard.

Qualified names arelooked up in the scope implied by the qualifying congtruct. If that scopeisaclass, then base
classes may aso belooked up. However, enclosing scopes are not consdered when looking up qualified names. The
falowingillugratesthisbasic principle:

int Xx;

class B {
public:
int i;
}s
class D: public B {
}s
void f(D* pd)

pd->i =3; [// finds B::
Di:x = 2; /1 ERROR does not find ::x in the encl osing scope

In contrast, unqualified names are typically looked up in successively more enclosing scopes (athough in member
function definitions the scope of the class and its base classesis searched before any other enclosing scopes). Thisis
cdled ordinary lookup. Here is abasic example showing the main idea underlying ordinary lookup:

extern int count; 1 (1)

i nt | ookup_exanpl e(int count) 11 (2)

{
if (count < 0) {
int count = 1; Il (3)
| ookup_exanpl e(count); // unqualified count refers to (3)
}
return count + ::count; /1 the first (unqualified) count refers to (2);
} /1 the second (qualified) count refers to (1)

A more recent twist to the lookup of unquaified namesis that—in addition to ordinary lookup—they may sometimes
undergo so-called argument-dependent lookup (ADL). [1] Before proceeding with the details of ADL, let's motivate
the mechanism with our perennid max() template:

[1] Thisisalso caled Koenig lookup (or extended Koenig lookup) after Andrew Koenig, who first proposed a
vaiation of thismechaniam.

tenpl ate <typename T>
inline T const& max (T const& a, T const& b)

{
}

return a <b ? b : a

Suppose now that we need to apply this template to atype defined in another namespace:

nanespace Bi ghath {
cl ass Bi gNunber {









9.3 Parsing Templates

Two fundamenta activities of compilersfor most programming languages are tokeni zation—al so called scanning or
lexing—and parsing. The tokenization process reads the source code as a sequence of characters and generates a
sequence of tokensfrom it. For example, on seeing the sequence of charactersint* p=0;, the "tokenizer" will
generate token descriptions for akeyword int,a symbol/operator *, an identifier p, asymbol/operator =, an integer
literal 0, and a symbol/operator ;.

A parser will then find known patternsin the token sequence by recursively reducing tokens or previoudy found
patternsinto higher level congtructs. For example, the token O isavaid expression, the combination * followed by an
identifier pisavalid declarator, and that declarator followed by "=" followed by the expresson "0" isdso avdid
declarator. Findly, the keyword int is aknown type name, and, when followed by the declarator * p=0, you get the
initidizating declaration of p.

9.3.1 Context Sensitivity in Nontemplates

Asyou may know or expect, tokenizing is easier than parsing. Fortunately, parsing is asubject for which asolid
theory has been devel oped, and many useful languages are not hard to parse using this theory. However, the theory
works best for so-called context-free language, and we have aready noted that C++ is context sengitive. To handle
this, a C++ compiler will couple asymboal table to the tokenizer and parser: When adeclaration is parsed, it is
entered in the symbol table. When the tokenizer finds an identifier, it looksit up and annotates the resulting token if it
findsatype.

For example, if the C++ compiler sees
X*
the tokenizer looks up x. If it finds atype, the parser sees

identifier, type, X
synbol , *

and concludesthat a declaration has started. However, if x isnot found to be atype, then the parser recelves from
the tokenizer

identifier, nontype, X
synmbol , *

and the construct can be parsed vaidly only asamultiplication. The details of these principles are dependent on the
particular implementation strategy, but the gist should be there.

Ancther example of context senstivity isillustrated in the following expression:
X<1>(0)

If X isthe name of aclasstemplate, then the previous expression casts the integer 0 to the type X<1> generated
from that template. If X isnot atemplate, then the previous expression is equivaent to

(X<1)>0

In other words, X iscompared with 1, and the result of that comparison—true or false, implicitly converted to 1 or O









9.4 Derivation and Class Templates

Classtemplates can inherit or be inherited from. For many purposes, thereis nothing significantly different between
the template and nontemplate scenarios. However, there is one important subtlety when deriving aclasstemplate
from abase classreferred to by a dependent name. Let'sfirst ook at the somewhat smpler case of nondependent
base classes.

9.4.1 Nondependent Base Classes

In aclasstemplate, anondependent base classis one with a complete type that can be determined without knowing
the template arguments. In other words, the name of this base is denoted using a nondependent name. For example:

t enpl at e<t ypenane X>
cl ass Base {
public:
int basefield;
typedef int T,

b
class Dl: public Base<Base<void> > { // not a tenplate case really
publi c:
void f() { basefield = 3; } /1 usual access to inherited nenmber
b
t enpl at e<t ypenane T>
class D2 : public Base<doubl e> { /1 nondependent base
public:
void f() { basefield = 7; } /1 usual access to inherited nenber
T strange; /1 T is Base<double>::T, not the tenplate paraneter!
b

Nondependent basesin templates behave very much like basesin ordinary nontemplate classes, but thereisadightly
unfortunate surprise: When an unqualified nameis looked up in the templated derivation, the nondependent bases are
consdered before the list of template parameters. This means that in the previous example, the member strange of the
classtemplate D2 dways hasthe type T corresponding to Base<double>:: T (in other words, int). For example, the
following functionis not valid C++ (assuming the previous declarations):

void g (D2<int*>& d2, int* p)
{

}

d2.strange = p; // ERROR type m smatch!

Thisis counterintuitive and requires the writer of the derived template to be aware of namesin the nondependent
bases from which it derives—even when that derivation isindirect or the names are private. It would probably have
been preferable to place template parametersin the scope of the entity they "templatize.”

9.4.2 Dependent Base Classes

In the previous example, the base classisfully determined. It does not depend on atemplate parameter. Thisimplies
that a C++ compiler can look up nondependent names in those base classes as soon as the template definition is
seen. An aternative—not dlowed by the C++ standard—would consist in delaying the lookup of such names until
the template isingtantiated. The disadvantage of this dternative approach isthat it also delays any error messages
resulting from missing symbols until instantiation. Hence, the C++ standard specifies that a nondependent name
gppearing in atemplate islooked up as soon asit is encountered. Keeping thisin mind, consider the following
exanple









9.5 Afternotes

Thefirst compiler redly to parse template definitions was devel oped by a company caled Taigent in the mid-1990s.
Before that—and even after that—most compilers treated templ ates as a sequence of tokensto be played back
through the parser at ingtantiation time. Hence no parsing was done, except for aminima amount sufficient to find the
end of atemplate definition. Bill Gibbonswas Taligent's representative to the C++ committee and was the principa
advocate for making templates unambiguoudy parsable. The Taigent effort was not released until the compiler was
acquired and completed by Hewlett-Packard (HP), to become the aC++ compiler. Among its competitive
advantages, the aC++ compiler was quickly recognized for its high quality diagnostics. Thefact that template
diagnostics were not dways delayed until ingtantiation time undoubtedly contributed to this perception.

Redatively early during the development of templates, Tom Penndlo—awidely recognized parsing expert working for
Metaware—noted some of the problems associated with angle brackets. Stroustrup a so comments on that topicin [
StroustrupDnE] and argues that humans prefer to read angle brackets rather than parentheses. However, other
possibilities exist, and Pennello specifically proposed braces (for example, List{::X}) a aC++ standards meeting in
1991 (held in Ddlas). [8] At that time the extent of the problem was more limited because templates nested inside
other templates—so-called member templates—were not valid and thus the discussion of Section 9.3.3 on page 132
was largdly irrdevant. Asaresult, the committee declined the proposa to replace the angle brackets.

[8] Braces are not entirely without problems either. Specificaly, the syntax to pecidize class templates would
require nontrivial adaptation.

The name lookup rule for nondependent names and dependent base classesthat is described in Section 9.4.2 on
page 136 wasintroduced in the C++ standard in 1993. It was described to the "generd public” in Bjarne
Stroustrup's [ StroustrupDnE] in early 1994. Y et the first generdly available implementation of thisrule did not appear
until early 1997 when HP incorporated it into their aC++ compiler, and by then large amounts of code derived class
templates from dependent bases. Indeed, when the HP engineers started testing their implementation, they found that
most of the programs that used templatesin nontrivia ways no longer compiled. [9] In particular, al implementations
of the STL [10] broke the rule in many hundreds—and sometimes thousands—of places. To easethetrangition
process for their customers, HP softened the diagnostic associated with code that assumed that nondependent names
could be found in dependent base classes as follows. When a nondependent name used in the scope of aclass
template is not found using the standard rules, aC++ peeksinsde the dependent bases. If the nameis still not found,
ahard error isissued and compilation fails. However, if the nameisfound in a dependent base, awarning isissued,
and the nameis marked to be treated asiif it were dependent, so that lookup will be reattempted at instantiation time.

[9] Fortunately, they found out before they released the new functionality.
[10] Ironically, thefirst of these implementations had been devel oped by HP aswell.

The lookup rule that causes aname in nondependent bases to hide an identically named template parameter (Section
9.4.1 on page 135) isan oversght, and it is not impossible that thiswill be changed in arevison of the standard. In
any casg, it is probably wise to avoid code with template parameter names that are also used in nondependent base
classes.

Andrew Koenig first proposed ADL for operator functions only (whichiswhy ADL issometimes caled Koenig
lookup). The mativation was primarily esthetic: explicitly qualifying operator names with their enclosing namespace
looks awvkward at best (for example, instead of at+b we may need to write N::operator+(a, b)) and having to write
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Chapter 10. Instantiation

Template instantiation is the process that generates types and functions from generic template definitions. [1] The
concept of ingtantiation of C++ templatesisfundamental but also somewnhat intricate. One of the underlying reasons
for thisintricacy isthat the definitions of entities generated by atemplate are no longer limited to asingle location in
the source code. The location of the template, the location where the template is used, and the locations where the
template arguments are defined al play arolein the meaning of the entity.

[1] Theterm instantiation is sometimes also used to refer to the creation of objects from types. In this book,
however, it dways refersto template ingtantiation.

In this chapter we explain how we can organize our source code to enable proper template use. In addition, we
survey the various methods that are used by the most popular C++ compilersto handle template instantiation.
Although al these methods should be semantically equivaent, it is useful to understand basic principles of your
compiler'singtantiation strategy. Each mechanism comeswith its set of little quirks when building red-life software
and, conversdly, each influenced the final specifications of sandard C++.
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10.1 On-Demand I nstantiation

When a C++ compiler encounters the use of atemplate specidization, it will create that specidization by substituting
the required arguments for the template parameters. [2] Thisis done automeatically and requires no direction from the
client code (or from the template definition for that matter). This on-demand instantiation feature sets C++ templates
apart from amilar facilitiesin other compiled languages. It is sometimes aso caled implicit or automatic ingtantiation.

[2] Theterm specidization isused in the generd sense of an entity that is a pecific instance of atemplate (see
Chapter 7). It does not refer to the explicit specidization mechanism described in Chapter 12.

On-demand ingtantiation implies that the compiler usualy needs accessto the full definition (in other words, not just
the declaration) of the template and some of its members at the point of use. Consider the following tiny source code
file

tenpl at e<typename T> class C, // (1) declaration only
Cint>* p = 0; /1 (2) fine: definition of C<int> not needed

t enpl at e<t ypenane T>

class C {

public:

void f(); /1 (3) menber declaration

}; /1 (4) class tenplate definition conpleted
void g (C<int>& c) /1 (5) use class tenplate declaration only
{

c.f(); /1 (6) use class tenplate definition
} /1 will need definition of C :f()

At point (1) in the source code, only the declaration of the template is available, not the definition (such adeclaration
Issometimes called aforward declaration). Asisthe case with ordinary classes, you do not need the definition of a
classtemplate to be in scope to declare pointers or references to this type (as was done at point (2)). For example,
the type of the parameter of function g does not require the full definition of the template C. However, assoon asa
component needs to know the size of atemplate specidization or if it accesses amember of such aspecidization, the
entire class template definition isrequired to be in scope. Thisexplainswhy at point (6) in the source code, the class
templ ate definition must seen; otherwise, the compiler cannot verify that the member existsand is ble (not
private or protected).

Hereis another expression that needs the instantiation of the previous class template because the size of C<void>is
needed:

C<voi d>* p = new C<voi d>

Inthiscase, ingtantiation is needed o that the compiler can determine the size of C<void>.Y ou might observe that
for this particular template, the type of the argument X substituted for T will not influence the Size of the template
because in any case, C<X> isan empty class. However, acompiler is not required to detect this. Furthermore,
ingtantiation is also needed in this example to determine whether C<void> has an accessi ble default constructor and
to ensure C<void> does not declare private operators new or delete.

The need to access amember of aclasstemplateis not dways very explicitly visible in the source code. For
example, C++ overload resolution requires vishility into class typesfor parameters of candidate functions:

t emn| at e<t vbenane T>









10.2 Lazy Instantiation

The examples so far illustrate requirements that are not fundamentaly different from the requirements when using
nontemplate classes. Many usesrequire a class type to be complete. For the template case, the compiler will
generate this complete definition from the class template definition.

A pertinent question now arises How much of the template isingtantiated? A vague answer isthe following: Only as
much asisredly needed. In other words, acompiler should be "lazy" when ingtantiating templates. Let'slook at
exactly what thislazinessentalls.

When aclasstemplateisimplicitly ingtantiated, each declaration of its membersisingantiated aswell, but the
corresponding definitions are not. There are afew exceptionsto this. First, if the class template contains an
anonymous union, the members of that union's definition are dso instantiated. [3] The other exception occurswith
virtuad member functions. Their definitions may or may not be ingtantiated as aresult of ingtantiating a class template.
Many implementationswill, in fact, indtantiate the definition because the interna structure that enablesthe virtua call
mechanism requiresthe virtuad functions actualy to exist aslinkable entities.

[3] Anonymous unions are dways specia in thisway: Their members can be considered to be members of the
enclosing class. An anonymous union is primarily aconstruct that says that some class members sharethe same
dtorage.

Default function call arguments are considered separately when ingtantiating templates. Specifically, they are not
ingtantiated unlessthereisacal to that function (or member function) that actualy makes use of the default argument.
If, on the other hand, that function is called with explicit arguments that override the default, then the default
arguments are not ingtantiated.

Let's put together an examplethat illustrates al theseissues.

/1 details/lazy.cpp

tenpl ate <typenane T>
class Safe {

};

tenplate <int N>
cl ass Danger ({
public:
typedef char Block[N; // would fail for N<=0
H

tenpl ate <typenane T, int N>
class Tricky {
public:
virtual ~Tricky() {
}
voi d no_body_here(Saf e<T> = 3);
void inclass() {
Danger <N> no_boom yet;
}

/1 void error() { Danger<0> boom }
/1 void unsafe(T (*p)[N);

T operator->();

/1 virtual Safe<T> suspect();









10.3 The C++ I nstantiation M odel

Template ingtantiation isthe process of obtaining aregular class or function from a corresponding template entity by
appropriately subgtituting the template parameters. Thismay sound fairly straightforward, but in practice many details
need to be formally established.

10.3.1 Two-Phase L ookup

In Chapter 9 we saw that dependent names cannot be resolved when parsing templates. Instead, they are looked up
again at the point of instantiation. Nondependent names, however, are looked up early so that many errors can be
diagnosed when the template isfirst seen. Thisleads to the concept of two-phase lookup [5]: Thefirst phaseisthe
parsing of atemplate, and the second phase isitsingtantiation.

[5] Beside two-phase lookup, terms such as two-stage lookup or two-phase name lookup are al so used.

During the first phase, nondependent names are looked up while the template is being parsed using both the ordinary
lookup rules and, if applicable, the rules for argument-dependent lookup (ADL ). Unqualified dependent names
(which are dependent because they [ook like the name of afunction in afunction cal with dependent arguments) are
also looked up that way, but the result of the lookup is not considered complete until an additional lookupis
performed when the templateisinstantiated.

During the second phase, which occurs when templates are instantiated at a point caled the point of ingtantiation
(PQI), dependent qudified names are looked up (with the template parameters replaced with the template arguments
for that specific ingantiation), and an additiona ADL is performed for the unqualified dependent names.

10.3.2 Points of I nstantiation

We have dready illustrated that there are pointsin the source of template clients where a C++ compiler must have
access to the declaration or the definition of atemplate entity. A point of ingtantiation (POI) is created when acode
congtruct refersto atemplate speciaization in such away that the definition of the corresponding template needsto
be ingtantiated to create that specidization. The POI isa point in the source where the substituted templ ate could be
inserted. For example:

class Mylnt {
public:
MInt(int i);
H

Myl nt operator - (Mylnt constg&);

bool operator > (MyInt const& M/Int const&);
typedef Mylnt Int;

t enpl at e<t ypenane T>
void f(T i)
{
if (i>0) {
g(-1);
}
}
Il (1)
void g(lnt)
{









10.4 Implementation Schemes

In this section we review someways in which popular C++ implementations support the incluson modd. All these
implementations rely on two classic components. acompiler and alinker. The compiler trandates source code to
object files, which contain machine code with symbolic annotations (cross-referencing other object filesand libraries).
The linker creates executable programs or libraries by combining the object files and resolving the symbolic
cross-references they contain. In what follows, we assume such amode even though it isentirely possible (but not
popular) to implement C++ in other ways. For example, you could imagine a C++ interpreter.

When aclasstemplate specidization is used in multiple trandation units, acompiler will repesat the ingtantiation
processin every trandation unit. This poses very few problems becauise class definitions do not directly create
low-level code. They are used only internaly by a C++ implementation to verify and interpret various other
expressons and declarations. In thisregard, the multiple ingtantiations of a class definition are not materialy different
from the multipleinclusions of adass definition—typicaly through header fileincluson—in varioustrandation units.

However, if you ingtantiate a (noninlineg) function template, the situation may be different. If you wereto provide
multiple definitions of an ordinary noninline function, you would violate the ODR. Assume, for example, that you
compileand link aprogram congisting of thefollowing two files:

/1 File a.cpp:
int main()

{

}

/1 File b.cpp:
int main()

{

}

C++ compilerswill compile each module separately without any problems because indeed they arevaid C++
trandation units. However, your linker will most likely protest if you try to link the two together. Duplicate definitions
arenot alowed.

In contrast, consider the template case:

/1 File t.hpp:
/1 common header (inclusion nodel)
t enpl at e<t ypenane T>
class S {
public:
void f();
H

t enpl at e<t ypenane T>
void S :f() /1 menber definition

{
}

voi d hel per ( S<i nt >*);

/1 File a.cpp:
#i ncl ude "t. hpp"

voi d hel per (S<i nt>* s)

{
s->f(); /1 (1) first point of instantiation of S::f









10.5 Explicit Instantiation

It ispossbleto create explicitly apoint of ingtantiation for atemplate specidization. The construct that achievesthisis
cdled an explicit ingtantiation directive. Syntacticdly, it conssts of the keyword template followed by a declaration of
the specidization to be ingtantiated. For example:

t enpl at e<t ypenane T>
void f(T) throwT)

{

}

/1 four valid explicit instantiations:
tenplate void f<int>(int) throwint);
tenplate void f<>(float) throwfloat);
tenplate void f(long) throw(long);
tenpl ate void f(char);

Note that every ingtantiation directiveis vaid. Template arguments can be deduced (see Chapter 11), and exception
gpecifications can be omitted. If they are not omitted, they must match the one of the template.

Members of classtemplates can dso be explicitly instantiated in thisway:

t enpl at e<t ypenane T>
class S {
public:
void f() {

}
};

tenplate void S<int>::f();

tenmpl ate cl ass S<voi d>;

Furthermore, dl the members of a class template specidization can be explicitly ingtantiated by explicitly instantiating
the classtemplate pecidization.

Many early C++ compilation systems did not have automatic instantiation capabilities when they first implemented
support for templates. Instead, some systems required that the function template specializations used by aprogram
be manudly indantiated in asingle location. This manud ingantiation usualy involved implementation-specific
#pragma directives.

The C++ standard therefore codified this practice by specifying aclean syntax for it. The standard also specifiesthat
there can be at most one explicit ingtantiation of a certain template specidization in aprogram. Furthermore, if a
template specidization is explicitly ingantiated, it should not be explicitly specidized, and vice versa

Inthe origind context of manud ingtantiations, these limitations may seem harmless, but in current practice they cause
somegrief.

Firdt, consgder alibrary implementer who releases afirst verson of afunction template:

/'l File toast. hpp:
t enpl at e<t ypenane T>
void toast (T const & x)









10.6 Afternotes

This chepter dealswith two related but different issues. the C++ template compilation modes and various C++
template indtantiation mechanisms.

The compilation model determines the meaning of atemplate at various stages of the trandation of aprogram. In
particular, it determines what the various congtructs in atemplate mean when it isinstantiated. Name lookup isan
essentia ingredient of the compilation modd of course. When we talk about the incluson mode and the separation
model, we talk about compilation models. These models are part of the language definition.

Theingantiation mechanisms are the external mechanismsthat alow C++ implementationsto create ingtantiations
correctly. These mechanisms may be constrained by requirements of the linker and other software building tools.

However, the origina (Cfront) implementation of templates transcended these two concepts. It created new
trandation unitsfor the ingtantiation of templates using a particular convention for the organization of sourcefiles. The
resulting trandation unit was then compiled usng what is essentidly theincluson modd (although the C++ name
lookup ruleswere substantialy different back then). So dthough Cfront did not implement " separate compilation” of
templates, it managed to create anillusion of separate compilation by creating implicit inclusons. Variouslater
implementations provided asomewhat smilar implicit inclusion mechanism by default (Sun Microsystems) or asan
option (HP, EDG) to provide some amount of compatibility with existing code developed for Cfront.

An exampleillugrates the details of the Cfront implementation scheme:

/'l File tenplate. hpp:
tenpl ate<class T> // Cfront doesn't know typenane
void f(T);

/'l File tenpl ate.cpp:
tenpl ate<class T> // Cfront doesn't know typenane

void f(T)

{

}

/'l File app. hpp:
class App {

H

I/ File main.cpp:
#i ncl ude "app. hpp"
#i ncl ude "tenpl at e. hpp"

int main()
{
App &;
f(a);
}

At link time, Cfront'siterated instantiation scheme then creates anew trandation unit including filesit expectsto
contain the implementation of the templatesit found in header files. Cfront's convention for thisisto replacethe .h (or
smilar) suffix of header filesby .c (or one of afew other suffixeslike .C or .cpp). In this case, the generated
trandation unit becomes

/1 File main.cpp:
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Chapter 11. Template Argument Deduction

Explicitly specifying template arguments on every cal to afunction template (for example, concat<std::string, int>(s,
3)) can quickly lead to unwieldy code. Fortunately, a C++ compiler can often automatically determine the intended
template arguments using a powerful process cdled template argument deduction.

In this chapter we explain the details of the template argument deduction process. Asis often the casein C++, there
aremany rulesthat usudly produce an intuitive result. A solid understanding of this chapter dlows usto avoid the
more surprising situations.
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11.1 The Deduction Process

The deduction process compares the types of an argument of afunction call with the corresponding parameterized
type of afunction template and attempts to conclude the correct substitution for one or more of the deduced
parameters. Each argument-parameter pair is anayzed independently, and if the conclusions differ in the end, the
deduction processfails. Consder the following example:

t enpl at e<t ypenane T>
T const& nax (T const& a, T consté& b)

{
}

return a<b?b: a;

int g = mx(1, 1.0);

Herethefirst cal argument is of typeint so the parameter T of our origind max() templateistentatively deduced to
beint. The second call argument isadouble, however, and so T should be double for thisargument: This conflicts
with the previous conclusion. Note that we say that "the deduction processfails," not that "the programisinvaid.”
After dl, it is possible that the deduction process would succeed for another template named max (function templates
can be overloaded much like ordinary functions; see Section 2.4 on page 15 and Chapter 12).

If dl the deduced template parameters are condstently determined, the deduction process can ill fail if subgtituting
the argumentsin the rest of the function declaration resultsin an invalid construct. For example:

t enpl at e<t ypenane T>
typenane T::ElementT at (T const& a, int i)

{
return afi];
}
void f (int* p)
{
int x = at(p, 7);
}

Here T isconcluded to beint* (thereisonly one parameter type where T gppears, so there are obvioudy no analysis
conflicts). However, subgtituting int* for T in the return type T::ElementT isclearly invaid C++, and the deduction
processfails. [1] Theerror messageislikely to say that no match was found for the cal to at(). In contragt, if dl the
template arguments are mentioned explicitly, then thereis no chance that the deduction process will succeed for
another template, and the error message is more likely to say that the template argumentsfor at() areinvaid. You can
investigate this by comparing the diagnostic for the previous example with

[1] Inthis case, deduction failure leads to an error. However, thisfalls under the SFINAE principle (see Section 8.3.1
on page 106): If there were another function for which deduction succeeds, the code could be valid.

void f (int* p)
{

}

int x = at<int*>(p, 7);

on your favorite C++ implementation.

We gtill need to explore how argument-parameter matching proceeds. We describeit in terms of matching atype A
(derived from the argument type) to a parameterized type P (derived from the parameter declaration). If the
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11.2 Deduced Contexts

Parameterized typesthat are consderably more complex than T can be matched to a given argument

type. Here are afew examplesthat are still fairly basic:

t enpl at e<t ypenane T>
void f1(T*);

tenpl ate<typenane E, int N>
void f2(E(&[N]);

tenpl at e<t ypenanme T1, typenane T2, typenane T3>
void f3(T1 (T2::*)(T3*));

class S {

public:
voi d f(doubl e*);
b

void g (int*** ppp)

{
bool b[42];
f1(ppp); /1 deduces T to be int**
f2(b); /1 deduces E to be bool and N to be 42
f3(&S::f); [/ deduces T1 = void, T2=S, and T3 = doubl e
}

Complex type declarations are built from more e ementary constructs (pointer, reference, array, and function
declarators; pointer-to-member declarators, template-ids; and so forth), and the matching process proceeds from the
top-level construct and recurses through the composing elements. It isfair to say that most type declaration
constructs can be matched in thisway, and these are called deduced contexts. However, afew constructs are not
deduced contexts:

Qudlified type names. A type name like Q<T>::X will never be used to deduce atemplate parameter T, for
example

Nontype expressions that are not just a nontype parameter. A type name like S<I+1> will never be used to
deduce, for example. Neither will T be deduced by matching against a parameter of type
Int(& )[9zeof (S<T>)].

These limitations should come as no surprise because the deduction would, in generd, not be unique (or even finite),
athough qudified type names are sometimes easily overlooked. A nondeduced context does not automatically imply
that the programisin error or even that the parameter being analyzed cannot participate in type deduction. To
illugtrate this, consder the following, more intricate example:

/1 details/fppmcpp

template <int N>
class X {
public:
typedef int I;

svisv oAl £/t T
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11.3 Special Deduction Situations

There aretwo stuationsin which the pair (A, P) used for deduction is not obtained from the argumentsto afunction
cal and the parameters of afunction template. Thefirst Situation occurs when the address of afunction templateis
taken. In this case, P is the parameterized type of the function template declarator, and A isthe function type
underlying the pointer that isinitialized or assigned to. For example:

t enpl at e<t ypenane T>
void f(T, T);

void (*pf)(char, char) = &f;

Inthisexample, Pisvoid(T, T) and A isvoid(char, char). Deduction succeeds with T substituted with char, and pf is
initiaized to the address of the specidization f<char>.

The other specid situation occurs with converson operator templates. For example:

class S {
public:
tenpl ate<typenanme T, int N> operator T[N &);
b

Inthiscase, thepair (P, A) isobtained asif it involved an argument of the type to which we are attempting to convert
and aparameter type that isthe return type of the conversion operator. The following code illustrates one variation:

void f(int (&/[20]);

void g(S s)
{

}

f(s);

Here we are attempting to convert Stoint (&)[20]. Type A istherefore int[20] and type Pis T[N]. The deduction
succeeds with T subgtituted with int and N with 20.
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11.4 Allowable Argument Conversions

Normally, template deduction attempts to find a substitution of the function template parameters that make the
parameterized type Pidentica to type A. However, when thisis not possible, the following differences aretolerable:

If the original parameter was declared with areference declarator, the substituted P type may be more
cong/volatile-qudified than the A type.

If the A typeisapointer or pointer-to-member type, it may be convertible to the substituted P type by a
qudification conversion (in other words, a conversion that adds const and/or volatile qudifiers).

Unless deduction occurs for aconversion operator template, the substituted P type may be abase classtype
of the A type, or apointer to abase classtype of the classtype for which A isapointer type. For example:

t enpl at e<t ypenane T>
class B<T> {

}

t enpl at e<t ypenane T>
class D : B<T> {

H
t enpl at e<t ypenane T> void f(B<T>*);
voi d g(D<l ong> dl)

f(&dl'); // deduction succeeds with T substituted with |ong
}

The relaxed matching requirements are considered only if an exact match was not possible. Even so, deduction
succeeds only if exactly one substitution was found to fit the A type to the substituted P type with these added
conversons.
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11.5 Class Template Parameters

Template argument deduction applies exclusvely to function and member function templates. In particular, the
arguments for aclass template are not deduced from the argumentsto acall of one of its congtructors. For example:

t enpl at e<t ypenane T>
class S {
public:
S(T b) : a(b) {
}

private:
T a,
H

S x(12); // ERROR the class tenplate paraneter T is not deduced
/1 fromthe constructor call argunent 12
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11.6 Default Call Arguments

Default function call arguments can be specified in function templatesjust asthey arein ordinary functions:

t enpl at e<t ypenane T>
void init (T* loc, T const& val = T())

{
}

*| oc = val

Infact, asthis example shows, the default function call argument can depend on atemplate parameter. Such a
dependent default argument isingtantiated only if no explicit argument is provided—a principle that makesthe
following examplevdid:

class S {
public:
S(int, int);
b

S s(0, 0);

int main()
{
init(&, S(7, 42)); [/ T() is invalid for T=S, but the default
/1 call argunment T() needs no instantiation
/1 because an explicit argument is given

}

Even when adefault call argument is not dependent, it cannot be used to deduce template arguments. This meansthat
thefollowingisinvaid C++:

t enpl at e<t ypenane T>
void f (T x = 42)

{
}
int main()
{
f<int>(); // OK T =int
f(); /1 ERROR cannot deduce T fromdefault call argunent
}
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11.7 The Barton-Nackman Trick

In 1994, John J. Barton and Lee R. Nackman presented atemplate technique that they called restricted template
expanson. The technique was motivated in part by the fact that—at the time— function templates could not be
overloaded [3] and namespaces were not available in most compilers.

[3] It may beworthwhileto read Section 12.2 on page 183 to understand how function template overloading works
in modern C++.

Toillugtrate this, suppose we have a class template Array for which we want to define the equality operator ==. One
possibility isto declare the operator as a member of the class template, but thisis not good practice because the first
argument (binding to the this pointer) is subject to conversion rulesthat are different from the second argument.
Because operator == is meant to be symmetrical with respect to itsarguments, it is preferableto declareit asa
namespace scope function. An outline of anaturad gpproach to itsimplementation may look like the following:

t enpl at e<t ypenane T>
class Array {

publi c:
H
t enpl at e<t ypenane T>
bool operator == (Array<T> const& a, Array<T> consté& b)
{
}

However, if function templates cannot be overloaded, this presents a problem: No other operator == template can
be declared in that scope, and yet it islikely that such atemplate would be needed for other classtemplates. Barton
and Nackman resolved this problem by defining the operator in the class asanormal friend function:

t enpl at e<t ypenane T>
class Array {
public:

friend bool operator == (Array<T> const& a,
Array<T> const& b) {
return ArraysAreEqual (a, b);

}s

Supposethisverson of Array isingtantiated for type float. The friend operator function isthen declared asaresult of
that instantiation, but note that this function itsalf isnot an ingtantiation of afunction template. It isanormal
nontemplate function that getsinjected in the globa scope as aside effect of the ingtantiation process. Becauseitisa
nontemplate function, it could be overloaded with other declarations of operator == even before overloading of
function templates was added to the language. Barton and Nackman referred to this as restricted template expansion
because it avoided the use of atemplate operator==(T, T) that applied to dl types T (in other words, unrestricted

expanson).

Because operator == (Array<T> const&, Array<T> cons& ) isdefined insde aclass definition, it isimplicitly
considered to be an inline function, and we therefore decided to delegate the implementation to afunction template
ArraysAreEqual, which doesn't need to be inline and isunlikely to conflict with another template of the same name.

bl P o WY IR N PRy [ S (DR [ PP [ L T R [ P T T N N R S RN S P 1



Ru-Brd




Ru-Brd -

11.8 Afternotes

Template argument deduction for function templateswas part of the origind C++ design. In fact, the dternative
provided by explicit template arguments did not become part of C++ until many years|ater.

Friend name injection was cong dered harmful by many C++ language experts because it made the validity of
programs more sengitive to the ordering of instantiations. Bill Gibbons (who &t the time was working on the Taligent
compiler) was among the most vocal supporters of addressing the problem, because eiminating instantiation order
dependencies enabled new and interesting C++ devel opment environments (on which Taligent was rumored to be
working). However, the Barton-Nackman trick required aform of friend nameinjection, and it isthis particular
technique that caused it to remain in the languagein its current (weakened) form.

Interestingly, many people have heard of the "Barton-Nackman trick," but few correctly associate it with the
technique described earlier. Asaresult, you may find many other techniques involving friends and templates being
referred to incorrectly asthe "Barton-Nackman trick” (for example, see Section 16.5 on page 299).

- -
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Chapter 12. Specialization and Overloading

So far we have studied how C++ templates dlow ageneric definition to be expanded into afamily of related classes
or functions. Although thisis a powerful mechanism, there are many Stuationsin which the generic form of an
operationisfar from optima for a specific subgtitution of template parameters.

C++ issomewhat unique among other popular programming languages with support for generic programming
because it hasarich set of features that enable the transparent replacement of a generic definition by amore
specidized facility. In this chapter we study the two C++ language mechanismsthat alow pragmatic deviationsfrom
pure genericness. template specidization and overloading of function templates.
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12.1 When " Generic Code" Doesn't Quite Cut It

Congder thefollowing example:

t enpl at e<t ypenane T>
class Array {
private:
T* dat a;

publi c:
Array(Array<T> const &);
Array<T>& operator = (Array<T> const&);

voi d exchange_with (Array<T>* b) {
T* tnp = data;
data = b->dat a;
b->data = tnp;
}
T& operator[] (size_t k) {
return datafk];
}

}s

tenpl at e<t ypenane T> inline
voi d exchange (T* a, T* b)

{
T tnp(*a);
*a = *b,
*bh = tnp;
}

For smple types, the generic implementation of exchange() workswell. However, for types with expensive copy
operations, the generic implementation may be much more expensve—both in terms of machine cyclesand in terms
of memory usage—than an implementation that istailored to the particular, given structure. In our example, the
generic implementation requires one call to the copy constructor of Array<T> and two calsto its copy-assgnment
operator. For large data structures these copies can often involve copying relaively large amounts of memory.
However, the functionality of exchange() could presumably often be replaced just by swapping the internd data
pointers, asis donein the member function exchange with().

12.1.1 Transparent Customization

In our previous example, the member function exchange with() provides an efficient dternative to the generic
exchange() function, but the need to use adifferent function isinconvenient in severd ways.

1.

Usersof the Array class have to remember an extrainterface and must be careful to use it when possible.

Generic dgorithms can generdly not discriminate between various possibilities. For example:
t enpl at e<t ypenane T>
void generic_algorithm T x, T* y)
{

exchange(x, y); [// How do we select the right algorithn?









12.2 Overloading Function Templates

In the previous section we saw that two function templates with the same name can coexist, even though they may be
ingtantiated so that both have identical parameter types. Here is another smple example of this:

/1 details/funcoverl oad. hpp
t enpl at e<t ypenane T>

int f(T)

{

}

t enpl at e<t ypenane T>
int f(T*)
{

}

return 1;

return 2;

When T issubgtituted by int* in thefirst template, afunction is obtained that has exactly the same parameter (and
return) types as the one obtained by substituting int for T in the second template. Not only can these templates
coexigt, their respective instantiations can coexist even if they haveidentical parameter and return types.

The following demonstrates how two such generated functions can be called using explicit template argument syntax
(assuming the previous template declarations):

/1 details/funcoverl oad. cpp

#i ncl ude <i ostreanp
#i ncl ude "funcoverl oad. hpp"

int main()

{
std::cout << f<int*>((int*)0) << std::endl
std::cout << f<int>((int*)0) << std::endl

}
This program hasthe following output:

1
2

To daify this, let'sanayzethe cal f<int*>((int*)0) in detail. [1] The syntax f<int*> indicates that we want to
subgtitute the first templ ate parameter of the template f with int* without relying on template argument deduction. In
this case there is more than one template f, and therefore an overload st is created containing two functions
generated from templates: f<int*>(int*) (generated from the first template) and f<int*>(int**) (generated from the
second template). The argument to the call (int*)0 hastypeint*. This matches only the function generated from the
first template, and hence that is the function that ends up being called.

[1] Note that the expression O isan integer and not anull pointer constant. It becomes anull pointer constant after a
specid implicit converson, but this conversion is not considered during template argument deduction.

A similar analyss can be written for the second call.

12.2.1 Signatures









12.3 Explicit Specialization

The ability to overload function templates, combined with the partid ordering rulesto select the "best" matching
function template, alows usto add more speciaized templates to a generic implementation to tune code transparently
for greater efficiency. However, class templates cannot be overloaded. Instead, another mechanism was chosen to
enable trangparent customization of classtemplates: explicit specidization. The standard term explicit specidization
refersto alanguage feature that we cal full specidization instead. It provides an implementation for atemplate with
template parametersthat are fully substituted: No template parameters remain. Class templates and function
templates can be fully specidized. So can members of class templates that may be defined outside the body of aclass
definition (i.e., member functions, nested classes, and static data members).

In alater section, wewill describe partid specidization. Thisissmilar to full specidization, but instead of fully
subgtituting the templ ate parameters, some parameterization isleft in the dternative implementation of atemplate. Full
specidizations and partid speciaizations are both equaly "explicit” in our source code, which iswhy we avoid the
term explicit specidization in our discussion. Neither full nor partid specidization introduces atotdly new template or
template ingtance. Instead, these congtructs provide dternative definitions for instances that are already implicitly
declared in the generic (or unspecidized) template. Thisisareatively important conceptua observation, anditisa
key difference with overloaded templates.

12.3.1 Full Class Template Specialization

A full specidization isintroduced with asequence of three tokens: template, <, and >. [3] In addition, the classname
declarator isfollowed by the template arguments for which the specidization is declared. The following example
illusratesthis

[3] The same prefix isaso needed to declare full function template specidizations. Earlier designs of the C++
language did not include this prefix, but the addition of member templates required additiona syntax to disambiguate
complex specidization cases.

t enpl at e<t ypenane T>
class S {
public:
void info() {
std::cout << "generic (S<T>::info())\n";
}
3
tenpl at e<>
cl ass S<void> {
public:
voi d nsg() {
std::cout << "fully specialized (S<void>::nmsg())\n";
}

}s

Note how the implementation of the full specidization does not need to be related in any way to the generic definition:
Thisdlows usto have member functions of different names (info versus msg). The connection is solely determined by
the name of the classtemplate.

Theligt of specified template arguments must correspond to the list of template parameters. For example, it isnot
vaid to specify anontype value for atemplate type parameter. However, template arguments for parameters with
default template arguments are optiond:

PR P T T









12.4 Partial Class Template Specialization

Full template specidization is often useful, but sometimesit is naturd to want to specidize aclasstemplate for afamily
of template arguments rather than just one specific set of template arguments. For example, let's assume we have a
dasstemplateimplementing alinked list:

t enpl at e<t ypenane T>
class List { /1 (1)
public:

voi d append(T const &)
inline size_t length() const;

}s

A large project making use of thistemplate may ingtantiate its membersfor many types. For member functions that
are not expanded inline (say, Ligt<T>::gppend()), thismay cause noticeable growth in the object code. However, we
may know that from alow-leve point of view, the code for List<int*>::gppend() and List<void*>::gppend() isthe
same. In other words, weld like to specify that dl Lists of pointers share an implementation. Although this cannot be
expressed in C++, we can achieve something quite close by specifying thet al Lists of pointers should be instantiated
from a different template definition:

t enpl at e<t ypenane T>
class List<T*> { // (2)
private:
Li st <voi d*> i npl ;

public:

voi d append(T* p) {
i mpl . append(p) ;
}

size_t length() const {
return inpl.length();

}
}s

In this context, the origind template a point (1) iscaled the primary template, and the latter definitioniscaled a
partid speciaization (because the template arguments for which this template definition must be used have been only
partialy specified). The syntax that characterizes apartial specidization isthe combination of atemplate parameter
list declaration (template<...>) and aset of explicitly specified template arguments on the name of the classtemplate
(<T*>in our example).

Our code contains a problem because List<void* > recursively contains a member of that same List<void*> type. To
break the cycle, we can precede the previous partid specidization with afull specidization:

tenpl at e<>
class List<void*> { Il (3)

voi d append (voi d* p);
inline size_t length() const;

}s

Thisworks because matching full speciaizations are preferred over partid specidizations. Asareault, dl member
functionsof Lists of pointers are forwarded (through easily inlineable functions) to the implementation of List<void*>.
Thisis an effective way to combat so-caled code bloat (of which C++ templates are often accused).
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12.5 Afternotes

Full template specidization was part of the C++ template mechanism from the start. Function template overloading
and classtemplate partia specidization, on other hand, came much later. The HP aC++ compiler wasthefirgt to
implement function template overloading, and EDG's C++ front end wasthe first to implement classtemplate partia
Specidization. The partiad ordering principles described in this chapter were originaly invented by Steve Adamczyk
and John Spicer (who are both of EDG).

The ability of template specidizations to terminate an otherwise infinitely recursive template definition (such asthe
List<T*> example presented in Section 12.4 on page 200) was known for along time. However, Erwin Unruh was
perhaps thefirg to note that this could lead to the interesting notion of template metaprogramming: Using the template
Instantiation mechanism to perform nontrivial computations at compile time. We devote Chapter 17 to thistopic.

Y ou may legitimately wonder why only class templates can be partially specidized. The reasons are mostly historical.
Itis probably possible to define the same mechanism for function templates (see Chapter 13). In some waysthe
effect of overloading function templatesis smilar, but there are al so some subtle differences. These differences are
mostly related to the fact that only the primary template needs to be looked up when ause is encountered. The
specidizations are consdered only afterward, to determine which implementation should be used. In contrast, al
overloaded function templates must be brought into an overload set by looking them up, and they may come from
different namespaces or classes. Thisincreasesthe likelihood of unintentionally overloading atemplate name
somewhat.

Conversdly, it isaso imaginableto alow aform of overloading of classtemplates. Hereisan example:

/1 invalid overloading of class tenplates
tenpl at e<t ypenane T1, typenane T2> class Pair;
tenplate<int N1, int N2> class Pair;

However, there doesn't seem to be a pressing need for such a mechanism.

Ru-Brd
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Chapter 13. Future Directions

C++ templates evolved considerably from their initial design in 1988 until the stlandardization of C++ in 1998 (the
technica work was completed in November 1997). After that, the language definition was stablefor severd years,
but during that time various new needs have arisen in the area of C++ templates. Some of these needsare smply a
consequence of adesirefor more consistency or orthogondity in the language. For example, why wouldn't default
template arguments be alowed on function templates when they are dlowed on class templates? Other extensions
are prompted by increasingly sophisticated template programming idioms that often stretch the abilities of existing
compilers.

In what follows we describe some extensons that have come up more than once among C++ language and compiler
designers. Often such extensions were prompted by the designers of various advanced C++ libraries (including the
C++ gtandard library). Thereis no guarantee that any of these will ever be part of standard C++. On the other hand,
some of these are dready provided as extensons by certain C++ implementations.
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13.1 The Angle Bracket Hack

Among the most common surprises for beginning template programmersis the necessity to add some blank space
between consecutive closing angle brackets. For example:

#i ncl ude <list>
#i ncl ude <vector>

typedef std::vector<std::list<int> > LineTable; [l K

typedef std::vector<std::list<int>> OherTable; // SYNTAX ERROR

The second typedef declaration is an error because the two closing angle brackets with no intervening blank space
condtitute a"right shift" (>>) operator, which makes no sense at that location in the source.

Y et detecting such an error and silently treating the >> operator as two closing angle brackets (a feature sometimes
referred to as the angle bracket hack) is relatively smple compared with many of the other capabilities of C++
source code parsers. Indeed, many compilers are aready able to recognize such situations and will accept the code
with awarning.

Hence, it islikely that afuture version of C++ will require the declaration of OtherTable (in the previous example) to
be vaid. Nevertheless, we should note that there are some subtle corners to the angle bracket hack. Indeed, there
are Stuations when the >> operator isavaid token within atemplate argument list. Thefollowing exampleillustrates
this

tenpl ate<int N> cl ass Buf;

t enpl at e<t ypenane T> void strange() {}
tenpl ate<int N> void strange() {}

int main()

{
}

strange<Buf <16>>2> >(); // the >> token is not an error

A somewhat related issue deal s with the accidental use of the digraph <:, which isequivaent to the bracket [ (see
Section 9.3.1 on page 129). Consider the following code extract:

tenpl at e<t ypenane T> cl ass List;
cl ass Marker;

Li st<:: Marker>* markers; // ERROR

Thelast line of thisexampleistreated as List[:Marker>* markers;, which makesno sense a al. However, a
compiler could conceivably take into account that atemplate such as List can never vaidly befollowed by aleft
bracket and disable the recognition of the corresponding digraph in that context.
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13.2 Relaxed typename Rules

Some programmers and language designers find the rules for the use of typename (see Section 5.1 on page 43 and
Section 9.3.2 on page 130) too strict. For example, in the following code, the occurrence of typename in typename
Array<T>::ElementT is mandatory, but the onein typename Array<int>::ElementT is prohibited (an error):

tenpl ate <typenane T>
class Array {
public:
typedef T El enmentT,

}s

tenpl ate <typenane T>
void clear (typename Array<T>::El enment T& p); Il K

tenpl at e<>
voi d clear (typenane Array<int>::El ementT& p); /1 ERROR

Examples such asthis can be surprising, and becauseit isnot difficult for aC++ compiler implementation smply to
ignore the extra keyword, the language designers are consdering alowing the typename keyword in front of any
qudified typenamethat is not aready € aborated with one of the keywords struct, class, union, or enum. Such a
decision would probably aso clarify when the .template, ->template, and ::template constructs (see Section 9.3.3 on
page 132) are permissible.

Ignoring extraneous uses of typename and template isrdatively straightforward from an implementer's point of view.
Interestingly, there are dso Stuations when the language currently requires these keywords but when an
implementation could do without them. For example, in the previous function template clear(), acompiler can know
that the name Array<T>::ElementT cannot be anything but atype name (no expressions are dlowed at that point),
and therefore the use of typename could be made optiond in that situation. The C++ standardization committeeis
therefore also examining changes that would reduce the number of situations when typename and template are
required.
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13.3 Default Function Template Arguments

When templates were originally added to the C++ language, explicit function template arguments were not avaid
congtruct. Function template arguments always had to be deducible from the call expression. Asaresult, there
seemed to be no compdlling reason to alow default function template arguments because the default would aways be
overridden by the deduced value.

Since then, however, it is possible to specify explicitly function template arguments that cannot be deduced. Hence, it
would be entirdly natura to specify default vaues for those nondeducible template arguments. Consider the following
exanple

tenpl ate <typenane T1l, typenane T2 = int>
T2 count (T1 const& Xx);
class Mylnt {

b
void test (Container consté& c)
{
int i = count(c);
M/l nt = count<WInt>(c);
assert (Mylnt == 1i);
}

In this example, we have respected the constraint that if atemplate parameter has a default argument value, then each
parameter after that must have a default template argument too. This congtraint is needed for classtemplates;
otherwise, there would be no way to specify trailling argumentsin the genera case. The following erroneous code
illugratesthis

tenpl ate <typenane Tl = int, typenane T2>
cl ass Bad;

Bad<int>* b; // Is the given int a substitution for Tl or for T2?

For function templates, however, thetrailing arguments may be deduced. Hence, thereisno technical difficulty in
rewriting our example asfollows.

tenpl ate <typename Tl = int, typenanme T2>
T1 count (T2 consté& Xx);

void test (Container consté& c)

{
int i = count(c);
M/l nt = count<Mylnt>(c);
assert(Mylnt == i);

}

At thetime of thiswriting the C++ standardization committee is considering extending function templatesin this
direction.

In hindsight, programmers have al so noted uses that do not involve explicit template arguments. For example:

tenpl ate <typename T = doubl e>
void f(T const& = T());
int main()
{
f(1); /1 OK: deduce T = int









13.4 String Literal and Floating-Point Template Arguments

Among the redtrictions on nontype template arguments, perhaps the most surprising to beginning and advanced
template writersdikeistheinability to provide astring literal as atemplate argument.

Thefollowing example seemsintuitive enough:

tenpl ate <char const* msg>
cl ass Di agnoser {
public:
void print();
H

int main()

{
}

Di agnoser<"Surprisel">().print();

However, there are some potential problems. In standard C++, two instances of Diagnoser are the sametypeif and
only if they have the same arguments. In this case the argument is a pointer value—in other words, an address.
However, two identical string literals ppearing in different source locations are not required to have the same
address. We could thus find oursalvesin the awkward Stuation that Diagnoser<"X"> and Diagnoser<"X"> arein fact
two different and incompatible types! (Note that the type of " X" is char const[2], but it decays to char const* when
passed as atemplate argument.)

Because of these (and related) consderations, the C++ standard prohibits string literals as arguments to templ ates.
However, some implementations do offer the facility as an extension. They enable thisby using the actud string litera
contentsin the interna representation of the template instance. Although thisis clearly feasible, some C++ language
commentators fed that a nontype template parameter that can be subgtituted by astring literal value should be
declared differently from one that can be substituted by an address. At the time of thiswriting, however, no such
declaration syntax has received overwhelming support.

We should aso note an additiona technica wrinklein thisissue. Consider the following template declarations, and
let's assume that the language has been extended to accept string literds astemplate argumentsin this case:

tenpl ate <char const* str>
cl ass Bracket {
public:
static char const* address() const;
static char const* bytes() const;

}s

tenpl ate <char const* str>
char const* Bracket <T>::address() const

{
}

return str;

tenpl ate <char const* str>
char const* Bracket <T>::bytes() const

{
}

return str;

In the previous code, the two member functions are identical except for their names—a Stuation that is not that
1iIncommon | manine that an imnl ementation wot ild inganti ate Rrackat<"' X" 119na a nroce<s mi ich like macro









13.5 Relaxed M atching of Template Template Parameters

A template used to substitute atemplate template parameter must match that parameter'slist of template parameters
exactly. This can sometimes have surprising consequences, as shown in the following example:

#1 ncl ude <list>
/] decl ares:
/1 nanespace std {

/1 tenmpl ate <typenane T,
/1 typenane Allocator = all ocator<T> >
11 class |ist;

11}

tenpl at e<t ypenane T1,
typenanme T2,
t enpl at e<t ypename> cl ass Cont ai ner >
/1 Container expects tenplates with only one paraneter
class Relation {
public:

private:
Cont ai ner <T1> doni;
Cont ai ner <T2> don?;

H
int main()
{ Rel ati on<int, double, std::list> rel;
// ERROR std::list has nore than one tenpl ate paraneter
}

Thisprogram isinvaid because our template template parameter Container expects atemplate taking one parameter,
whereas std::list has an dlocator parameter in addition to its parameter that determines the eement type.

However, because std::list has a default template argument for its alocator parameter, it would be possible to specify
that Container maiches td::list and that each instantiation of Container uses the default template argument of std::list
(see Section 8.3.4 on page 112).

Anargument in favor of the status quo (no match) isthat the same rule gpplies to matching function types. However,
in this case the default arguments cannot dways be determined because the value of afunction pointer usually isn't
fixed until runtime. In contrast, there are no "template pointers,” and dl the required information can be available at
compiletime.

Some C++ compilers aready offer the relaxed matching rule as an extension. Thisissueisaso related to theissue of
typedef templates (discussed in the next section). Indeed, consider replacing the definition of main() in our previous
examplewith:

tenpl ate <typenane T>
typedef 1ist<T> MyList;

int nmain()

{
}

Rel ation<int, double, MyList> rel;
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13.6 Typedef Templates

Classtemplates are often combined in relatively sophisticated waysto obtain other parameterized types. When such
parameterized types appear repeatedly in source code, it is natural to want a shortcut for them, just astypedefs
provide a shortcut for unparameterized types.

Therefore, C++ language designers are considering a construct that may look asfollows:

tenpl ate <typenane T>
typedef vector<list<T> > Tabl e;

After this declaration, Table would be anew template that can be instantiated to become a concrete type definition.
Such atemplateis called atypedef template (as opposed to a class template or afunction template). For example:

Tabl e<int> t; /1 t has type vector<list<int> >

Currently, the lack of typedef templatesis worked around by using member typedefs of class templates. For our
examplewe might use:

tenpl ate <typenane T>
class Table {
public:
t ypedef vector<list<T> > Type;

}s

Table<int>::Type t; [/ t has type vector<list<int> >
Because typedef templates are to be full-fledged templates, they could be specidized much like classtemplates:

[l primary typedef tenplate:
tenpl at e<t ypenane T> typedef T Opaque;

/1 partial specialization
tenpl at e<t ypenanme T> typedef void* Opaque<T*>;

[l full specialization
tenpl at e<> typedef bool Opaque<voi d>

Typedef templates are not entirely straightforward. For example, it isnot clear how they would participate in the
deduction process.

voi d candi dat e(l ong);
tenpl at e<t ypenane T> typedef T DT;
tenpl at e<t ypenane T> voi d candi dat e( DT<T>);

int main()

{
}

candi date(42); // which candidate() should be call ed?

It isnot clear that deduction should succeed in this case. Certainly, deduction is not possible with arbitrary typedef
patterns.









13.7 Partial Specialization of Function Templates

In Chapter 12 we discussed how class templates can be partially speciaized, whereas function templates are smply
overloaded. The two mechanisms are somewhat different.

Partid specidization doesn't introduce acompletely new template: It isan extension of an existing template (the
primary template). When a class template islooked up, only primary templates are consdered at firdt. If, after the
selection of aprimary template, it turns out that thereisa partid speciaization of that template with atemplate
argument pattern that matches that of the ingtantiation, its definition (in other words, its body) isingantiated instead of
the definition of the primary template. (Full template specidizations work exactly the sameway.)

In contrast, overloaded function templates are separate templ ates that are completely independent of one another.
When sdlecting which template to instantiate, al the overloaded templates are considered together, and overload
resol ution attempts to choose one as the best fit. At first this might seem like an adequate dternative, but in practice
there are anumber of limitations:

It is possible to specidize member templates of a class without changing the definition of that class. However,
adding an overloaded member does require a changein the definition of aclass. In many casesthisisnot an
option because we may not own the rightsto do so. Furthermore, the C++ standard does not currently alow
usto add new templates to the std namespace, but it does allow us to speciaize templates from that

namespace.

To overload function templates, their function parameters must differ in some materia way. Consder a
function template R convert(T const& ) where R and T are template parameters. We may very well want to
specidize thistemplate for R = void, but this cannot be done using overloading.

Codethat isvdid for anonoverloaded function may no longer be valid when the function is overloaded.
Specifically, given two function templatesf(T) and g(T) (where T isatemplate parameter), the expression
g(&f<int>) isvaid only if f isnot overloaded (otherwise, thereisno way to decide which f is meant).

Friend declarations refer to a specific function template or an ingtantiation of aspecific function template. An
overloaded version of afunction template would not automaticaly have the privileges granted to the original
template.

Together, thisligt forms acompelling argument in support of a partid specidization congtruct for function templates.

A naturd syntax for partidly specidizing function templatesisthe generdization of the classtemplate notation:

tenpl ate <typenanme T>
T const& max (T const&, T const&); /1l primary tenpl ate

tenpl ate <typenanme T>
T* const& max <T*>(T* const& T* const&): // partial specialization









13.8 The typeof Operator

When writing templates, it is often useful to be able to express the type of atemplate-dependent expression. Perhaps
the poster child of thisSituation isthe declaration of an arithmetic operator for anumeric array template in which the
element types of the operands are mixed. The following example should make this clear:

tenpl ate <typenanme T1, typename T2>
Array<???> operator+ (Array<T1l> const& X, Array<T2> consté& y);

Presumably, this operator isto produce an array of dementsthat are the result of adding corresponding el ementsin
thearraysx andy. Thetype of aresulting element isthusthe type of x[0]+y[0]. Unfortunately, C++ does not offer a
reliable way to expressthistypeintermsof T1 and T2.

Some compilers provide the typeof operator as an extension that addressesthisissue. It isreminiscent of the sizeof
operator in that it can take an expression and produce a compile-time entity from it, but in this case the compile-time
entity can act asthe name of atype. In our previous examplethis alows usto write:

tenpl ate <typenane T1, typename T2>
Array<typeof (T1()+T2())> operator+ (Array<T1> const& X,
Array<T2> const& y);

Thisisnice, but not ideal. Indeed, it assumesthat the given types can be default-initiaized. We can work around this
assumption by introducing ahdper template asfollows:

tenpl ate <typenane T>
T makeT(); // no definition needed

tenpl ate <typenane T1, typenanme T2>
Array<t ypeof (nmakeT<T1>() +makeT<T2>()) >
operator+ (Array<Tl> const& X,
Array<T2> const& y);

Weredly would prefer to use x and y in the typeof argument, but we cannot do so because they have not been
declared at the point of the typeof construct. A radical solution to this problem isto introduce an aternative function
declaration syntax that places the return type after the parameter types.

/| operator function tenplate:

tenpl ate <typenane T1, typename T2>

operator+ (Array<Tl> const& X, Array<T2> const& y)
-> Array<typeof (x+y) >

/'l regular function tenplate:

tenpl ate <typenane T1, typename T2>

function exp(Array<T1l> const& x, Array<T2> const& y)
-> Array<typeof (exp(x, y))>

Asthe exampleillustrates, anew keyword (here, function) is necessary to enable the new syntax for nonoperator
functions (for operator functions, the operator keyword is sufficient to guide the parsing process).

Note that typeof must be a compile-time operator. In particular, typeof will not take into account covariant return
types, asthe following example shows:

cl ass Base {
public:
virtual Base clone();
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13.9 Named Template Arguments

Section 16.1 on page 285 describes a technique that allows us to provide a nondefault template argument for a
specific parameter without having to specify other template arguments for which adefault value isavailable. Although
itisan interesting technique, it isaso clear that it resultsin afair amount of work for ardatively smple effect. Hence,
providing alanguage mechanism to name template argumentsisanatura thought.

We should note at this point, that asimilar extension (sometimes called keyword arguments) was proposed earlier in
the C++ standardization process by Roland Hartinger (see Section 6.5.1 of [ StroustrupDnE]). Although technically
sound, the proposal was ultimately not accepted into the language for various reasons. At this point thereis no reason
to believe named template arguments will ever makeit into the language.

However, for the sake of completeness, we mention one syntactic ideathat has floated among certain designers:

tenpl at e<t ypenane T,

Move: typenane M = defaul t Move<T>,
Copy: typename C = defaul t Copy<T>,
Swap: typename S = defaul t Swap<T>,
Init: typename | = defaultlnit<T>,
Kill: typename K = defaul tKill<T> >

class Miutator {

H

void test(MatrixList m)

{

mySort (ml, Miutator <Matrix, Swap: matrixSwap>);
}

Note how the argument name (preceding a colon) is distinct from the parameter name. Thisalows usto keep the
practice of using short namesfor the parameters used in the implementation while having a saf-documenting namefor
the argument names. Because this can be overly verbose for some programming styles, one can also imagine the
ability to omit the argument nameif it isidenticd to the parameter name:

tenpl at e<t ypenane T,
. typenane Mve
. typenanme Copy
: typenane Swap
: typenane Init
: typenane Kill
class Mutator {

def aul t Move<T>,
def aul t Copy<T>,
def aul t Swap<T>,
defaul t1nit<T>,
defaul tKil |l <T> >

}s
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13.10 Static Properties

In Chapter 15 and Chapter 19 we discuss various ways to categorize types"a compiletime.” Such traitsare useful in
selecting specidizations of templates based on the static properties of the type. (See, for example, our CSMtraits
classin Section 15.3.2 on page 279, which attempts to select optimal or near-optimal policiesto copy, swap, or
move dements of the argument type.)

Some language designers have observed that if such "specidization sdlections’ are commonplace, they shouldn't
require elaborate user-defined codeif dl that is sought is aproperty that the implementation knows interndly anyway.
The language could instead provide anumber of built-in typetraits. The following could be avalid complete C++
program with such an extenson:

#i ncl ude <i ostreanp

int main()

{
std::cout << std::type<int>::is_bit_copyable << '\ n'
std::cout << std::type<int>: :is_union << '\n'

}

Although a separate syntax could be devel oped for such acongtruct, fitting it in auser-definable syntax may alow for
amore smooth trangtion from the current language to alanguage that would include such fecilities. However, some of
the static propertiesthat a C++ compiler can easily provide may not be obtainable using traditiond traits techniques
(for example, determining whether atypeisaunion), which isan argument in favor of making this alanguage e ement.
Another argument isthat it can sgnificantly reduce the amount of memory and machine cycles required by acompiler
to trandate programs that rely on such properties.
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13.11 Custom I nstantiation Diagnostics

Many templates put someimplicit requirements on their parameters. When the arguments of an ingtantiation of such a
template do not fulfill the requirements, either ageneric error isissued or the generated instantiation does not function
correctly. In early C++ compilers, the generic errors produced during template instantiations were often exceedingly
opague (see page 75 for an example). In more recent compilers, the error messages are sufficiently clear for an
experienced programmer to track down a problem quickly, but thereis still adesire to improve the Situation.
Condder thefollowing artificid example (meant to illustrate what happensin red template libraries):

tenpl ate <typenane T>
void clear (T const& p)

{
}

*p =0; // assunes T is a pointerlike type
tenpl ate <typenane T>
void core (T consté& p)

clear(p);

}

tenpl ate <typenane T>
void mddle (typenane T::Index p)

{
}

core(p);

tenpl ate <typenane T>
voi d shell (T consté& env)

{

typenanme T::|ndex i
m ddl e<T>(i);
}

class dient {

public:
typedef int Index;

b
Cient main_client;

int nmain()

{
}

shel | (mai n_client);

Thisexampleillugtratesthe typica layering of software development: High-level function templateslike shell() rely on
components like middlg(), which themsalves make use of basic facilities like core(). When we ingantiate shell(), all
the layersbelow it aso need to be ingtantiated. In this example, aproblem isreveded in the degpest layer: core() is
ingtantiated with typeint (from the use of Client::Index in middi&()) and attempts to dereference avaue of that type,
whichisan error. A good generic diagnostic will include atrace of dl the layersthat led to the problems, but this
amount of information may be unwieldy.

An dternative that has often been proposed isto insert adevice in the highest level template to inhibit deeper
ingtantiation if known requirements from lower levels are not satisfied. Various attempts have been madeto
implement such devicesin terms of existing C++ congtructs (for example, see[ BCCL]), but they are not dways
effective. Hence, it is not surprising that language extens ons have been proposed to addressthe issue. Such an
extension could clearly build on top of the Satic properties facilities discussed earlier. For example, we can envison
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13.12 Overloaded Class Templates

Itisentirely possible to imagine that class templates could be overloaded on their template parameters. For example,
one canimaginethefollowing:

tenpl ate <typename T1>
class Tuple {
/1 singleton

}

tenpl ate <typenane T1, typename T2>
class Tuple {
[l pair

}

tenpl ate <typenane T1, typenane T2, typename T3>
class Tuple {
/1 three-elenment tuple

}

In the next section we discuss an gpplication of such overloading.

The overloading isn't necessarily restricted to the number of template parameters (such overloading could be
emulated using partial specialization asis done for FunctionPtr in Chapter 22). Thekind of parameters can be varied
too:

tenpl ate <typenane T1, typename T2>
class Pair {
/1 pair of fields

H
tenplate <int 11, int |12>

class Pair {
/1 pair of constant integer val ues

}

Although thisidea has been discussed informaly by some language designers, it has not yet been formaly presented
to the C++ standardization committee,

Ru-Brd






13.13 List Parameters

A need that shows up sometimesisthe ability to passalist of types asasingle template argument. Usudly, thislistis
meant for one of two purposes. declaring afunction with a parameterized number of parameters or defining atype
sructure with a parameterized list of members.

For example, we may want to define atemplate that computes the maximum of an arbitrary list of vaues. A potentia
declaration syntax uses the €llipsis token to denote that the last template parameter is meant to match an arbitrary
number of arguments:

#i ncl ude <i ostreanr

tenplate <typename T, ... list>

T const& max (T const& T const&, |ist const&)
int main()

{

std::cout << max(1, 2, 3, 4) << std::endl;

}

Various possihilities can be thought of to implement such atemplate. Here is one that doesn't require new keywords
but adds a rule to function template overloading to prefer afunction template without alist parameter:

tenpl ate <typenane T> inline
T const& nax (T const& a, T consté& b)

{

/1 our usual binary naximm

return a<b?b: a;
}
tenplate <typenane T, ... list> inline
T const& nax (T const& a, T const& b, list const& Xx)
{

return max (a, max(b, x));

}

Let's go through the steps that would make thiswork for the call max(1, 2, 3, 4). Because there are four arguments,
the binary max() function doesn't match, but the second one does match with T = int and list = int, int. This causes us
to call the binary function template max() with the first argument equa to 1 and the second argument equd to the
evauation of max(2, 3, 4). Again, the binary operation doesn't match, and we cdl the list parameter versonwith T =
int and list = int. Thistime the subexpression max(b,x) expands to max(3,4), and the recursion ends by sdecting the
binary template.

Thisworksfairly well thanksto the ability of overloading function templates. Thereismoreto it than our discussion,
of course. For example, we'd have to specify precisely what list const& meansin this context.

Sometimes, it may be desirable to refer to particular elements or subsets of thelist. For example, we could use the
subscript brackets for this purpose. The following example shows how we could construct a metaprogram to count
thedementsin alig using thistechnique:

tenpl ate <typename T>
cl ass ListProps {
public:
enum{ length = 1 };
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13.14 Layout Control

A fairly common template programming chalenge isto declare an array of bytesthat will be sufficiently large (but not
excessvely s0) to hold an object of an as yet unknown type T—in other words, atemplate parameter. One
gpplication of thisisthe so-caled discriminated unions (lso called variant types or tagged unions):

tenplate <... list>
class D _Union {
public:
enum { n_bytes; };
char bytes[n_bytes]; // will eventually hold one of various types
/1 described by the tenplate argunents
H

The congtant n_bytes cannot always be set to sizeof(T) because T may have more strict dignment requirements than
the bytes buffer. Various heuristics exist to take this aignment into account, but they are often complicated or make
somewhat arbitrary assumptions.

For such an application, what isredly desired isthe ability to expressthe dignment requirement of atypeasa
congtant expression and, conversaly, the ability to impose an dignment on atype, afield, or avariable. Many C and
C++ compilersaready support an__aignof ___ operator, which returns the dignment of agiven type or expression.
Thisisamost identica to the sizeof operator except that the alignment is returned instead of the Size of the given type.
Many compilers aso provide #pragmadirectives or Smilar devicesto set the dignment of an entity. A possible
approach may be to introduce an dignof keyword that can be used both in expressions (to obtain the alignment) and
in declarations (to set the dignment).

tenpl ate <typenane T>
class Alignnent {
public:
enum { max = alignof(T) };

b

tenplate <... list>

class Alignnent {

public:
enum{ nmax = alignof(list[0]) > Alignnent<list[1 ...]>:nax

? alignof(list[0])
 Alignment<list[1l ...]>:max; }

b

/1l a set of Size tenplates could simlarly be designed
/1 to deternmine the largest size anong a given |list of types

tenmplate <... list>
class Variant {
public:
char buffer[Size<list>::max] alignof(Alignnent<list>::nmax);

}s
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13.15 I nitializer Deduction

It isoften said that "programmers arelazy,” and sometimesthisrefersto our desire to keep programmetic notation
compact. Congder, in that respect, the following declaration:

std::map<std::string, std::list<int> >* dict
= new std::map<std::string, std::list<int> >;

Thisisverbose, and in practice we would (and most likely should) introduce atypedef synonym for the type.
However, there is something redundant in this declaration: We specify thetype of dict, but it isalso implicit in the type
of itsinitidizer. Wouldn't it be consderably more el egant to be able to write an equivaent declaration with only one
type specification? For example:

dcl dict = new std::map<std::string, std::list<int> >;

Inthislast declaration, the type of avariable is deduced from the type of theinitidizer. A keyword (dcl inthe
example, but var, let, and even auto have been proposed as aternatives) is needed to make the declaration
distinguishable from an ordinary assgnmern.

So far, thisisn't atemplate-only issue. In fact, it gppears such a construct was accepted by avery early version of the
Cfront compiler (in 1982, before templates came on the scene). However, it isthe verbosity of many template-based
typesthat increases the demand for thisfesture.

One could dso imagine partid deduction in which only the arguments of atemplate must be deduced:
std::list<> index = create_index();
Another variant of thisisto deduce the template arguments from the congtructor arguments. For example:

tenpl ate <typename T>
cl ass Conpl ex {
public:
Conpl ex(T const& re, T const& im;

}s

Conpl ex<> z(1.0, 3.0); // deduces T = double

Precise specifications for this kind of deduction are made more complicated by the possibility of overloaded
congtructors, including constructor templates. Suppose, for example, that our Complex template containsa
congtructor template in addition to anormal copy constructor:

tenpl ate <typename T>
cl ass Conpl ex {
public:
Conpl ex( Conpl ex<T> const &) ;

tenpl ate <typenanme T2> Conpl ex( Conpl ex<T2> const &) ;

H
Conpl ex<doubl e> j (0.0, 1.0);
Complex<> z =j; [/ Wich constructor was intended?

Inthelatter initiaization, it is probable that the regular copy constructor was intended; hence z should have the same
type asj. However, making it an implicit rule to ignore constructor templates may be overly bold.









13.16 Function Expressions

Chapter 22 illustratesthat it is often convenient to pass small functions (or functors) as parametersto other functions.
We aso mention in Chapter 17 that expression template techniques can be used to build smal functors concisely
without the overhead of explicit declarations (see Section 18.3 on page 340).

For example, we may want to call aparticular member function on each element of a standard vector to initidizeit:

cl ass BigVal ue {

public:
void init();
H
class Init {
public:
voi d operator() (BigValue& v) const {
v.init();
}
H
voi d compute (std::vector<BigVal ue>& vec)
{
std::for_each (vec.begin(), vec.end(),
Init());
}

The need to define a separate class Init for this purposeis unwieldy. Instead, we can imagine that we may write
(unnamed) function bodies as part of an expression:

cl ass Bi gVal ue {

public:

void init();
H
void compute (std::vector<BigVal ue>& vec)
{

std::for_each (vec.begin(), vec.end(),

$(BigValue&) { $1.init(); });

}

Theideahereisthat we can introduce a function expression with a specid token $ followed by parameter typesin
parentheses and a brace-enclosed body. Within such a construct, we can refer to the parameters with the specid
notation $n, where n is a constant indicating the number of the parameter.

Thisformisclosdy related to so-called lambda expressions (or lambda functions) and closuresin other programming
languages. However, other solutions are possible. For example, a solution might use anonymous inner classes, as
seeninJava

cl ass Bi gVal ue {
public:
void init();

}s

voi d conmpute (std::vector<BigVal ue>& vec)
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13.17 Afternotes

It seems perhaps premature to talk about extending the language when C++ compilers are only barely becoming
mostly compliant to the 1998 standard (C++98). However, it isin part because this compliance is being achieved
that we (the C++ programmers community) are gaining insght into the true limitations of C++ (and templatesin

particular).

To meet the new needs of C++ programmers, the C++ standards committee (often referred to as SO WG2L/ANS
J16, or just WG21/J16) started examining aroad to anew standard: C++0x. After apreliminary presentation &t its
April 2001 meeting in Copenhagen, WG21/J16 started examining concrete library extension proposas.

Indeed, the intention isto attempt as much as possible to confine extensonsto the C++ standard library. However, it
iswdl understood that some of these extensions may require work in the core language. We expect that many of
these required modifications will relate to C++ templates, just asthe introduction of STL in the C++ standard library
stimulated template technology in the 1990s.

Findly, C++0x is aso expected to address some "embarrassments’ in C++98. It is hoped that doing so will improve
the bility of C++. Some of the extensgonsin that direction were discussed in this chapter.
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Part I11: Templates and Design

Programs are generdly congtructed using designsthat map relatively well on the mechanisms offered by achosen
programming language. Because templates are awhole new language mechanism, it is not surprising to find that they
cal for new design elements. We explore these e ementsin this part of the book.

Templates are different from more traditional |anguage congtructsin that they dlow usto parameterize the types and
congtants of our code. When combined with (1) partia specidization and (2) recursive ingtantiation, thisleadsto a
surprisng amount of expressve power. In the following chapters, thisisillustrated by alarge number of design
techniques:

| Generic programming
Trats
Policy classes
Metgorogramming
Expression templates

Our presentation ams not only at listing the various known design eements, but aso at conveying the principlesthat
inspire such designs so that new techniques may be created.
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Chapter 14. The Polymorphic Power of Templates

Polymorphism isthe ability to associate different specific behaviorswith asingle generic notation. [1] Polymorphism
isaso acornerstone of the object-oriented programming paradigm, which in C++ is supported mainly through class
inheritance and virtua functions. Because these mechanism are (at least in part) handled a run time, we talk about
dynamic polymorphism. Thisisusualy what isthought of when talking about plain polymorphism in C++. However,
templates dso allow usto associate different specific behaviors with asingle generic notation, but thisassociation is
generdly handled at compile time, which we refer to as static polymorphism. In this chapter we review the two forms
of polymorphism and discuss which form is gppropriate in which Stuations.

[1] Polymorphism literally refersto the condition of having many forms or shapes (from the Greek polumorphos).
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14.1 Dynamic Polymor phism

Higtoricaly, C++ started with supporting polymorphism only through the use of inheritance combined with virtua
functions. [2] Theart of polymorphic design in this context consists of identifying acommon set of capabilitiesamong
related object types and declaring them as virtual function interfacesin acommon base class.

[2] Strictly speaking, macros can aso be thought of as an early form of static polymorphism. However, they are left
out of consideration because they are mostly orthogona to the other language mechanisms.

The poster child for this design approach is an application that manages geometric shapes and alows them to be
rendered in some way (for example, on a screen). In such an application we might identify a so-called abstract base
class (ABC) GeoObyj, which declares the common operations and properties applicable to geometric objects. Each
concrete class for specific geometric objects then derives from GeoObj (see Figure 14.1):

Figure 14.1. Polymor phism implemented viainheritance

GeoQbj

virtual draw{) =0
virtual center_of_gravity() = 0

Circle Line Rectangle
drawl() draw() draw()
center_of_gravity() || center_of_gravity() || center_of gravity()

/1 pol y/ dynahi er. hpp
#i ncl ude "coord. hpp"

/1 common abstract base class GeoObj for geonetric objects
class Geonj {
public:
/1 draw geonetric object:
virtual void draw() const = O;
/1 return center of gravity of geonetric object:
virtual Coord center_of gravity() const = 0;

};

/1l concrete geonetric object class Crcle
/1 - derived from Geohj
class Circle : public Geonj {
public:
virtual void draw() const;
virtual Coord center_of gravity() const;

};

/1 concrete geonetric object class Line
/1 - derived from Geohj
class Line : public Geobj {
public:
virtual void draw() const;









14.2 Static Polymor phism

Templates can aso be used to implement polymorphism. However, they don't rely on the factoring of common
behavior in base classes. Ingteed, the commondity isimplicit in that the different "shapes' of an gpplication must
support operations using common syntax (that is, the relevant functions must have the same names). Concrete classes
are defined independently from each other (see Figure 14.2). The polymorphic power is then enabled when
templates are instantiated with the concrete classes.

Figure 14.2. Polymor phism implemented via templates

Circle Line Rectangle
draw) drawy() drawf()
center_of _gravity() || center_of_gravity{) [| center_of _gravity()

For example, the function myDraw() in the previous section

void nmyDraw (GeoObj const & obj) /]l GeoObj is abstract base class
{

}

obj .draw();

could conceivably be rewritten asfollows:

tenpl ate <typenanme CGeoChj >
voi d nyDraw (CGeoObj const & obj) /] GeoQbj is tenplate paraneter

{
}

obj .draw();

Comparing the two implementations of myDraw(), we may conclude that the main differenceis the specification of
GeoObj as atemplate parameter instead of acommon base class. There are, however, more fundamenta differences
under the hood. For example, using dynamic polymorphism we had only one myDraw() function at run time, whereas
with the template we have distinct functions, such as myDraw<Line>() and myDraw<Circle>().

We may attempt to recode the complete example of the previous section using static polymorphism. First, instead of
ahierarchy of geometric classes, we have severd individua geometric classes.

/'l polylstatichier.hpp
#i ncl ude "coord. hpp"

/1l concrete geonetric object class Circle
/1l - not derived fromany cl ass
class Circle {
public:
void draw() const;
Coord center_of _gravity() const;

};

/1l concrete geonetric object class Line
/1l - not derived fromany cl ass
cl ass Line {

public:









14.3 Dynamic ver sus Static Polymor phism

L et's categorize and compare both forms of polymorphisms.

Terminology
Dynamic and static polymorphism provide support for different C++ programming idioms [3] :

[3] For adetailed discussion of polymorphism terminology, see also Sections 6.5 to 6.7 of |
CzarneckiEiseneckerGenProg].

Polymorphism implemented viainheritance is bounded and dynamic:
- Bounded meansthat the interfaces of the types participating in the polymorphic behavior are predetermined
by the design of the common base class (other termsfor this concept areinvasive or intrusive).

- Dynamic meansthat the binding of the interfacesis done a run time (dynamically).

Polymorphism implemented viatemplates is unbounded and Satic:
- Unbounded means that the interfaces of the types participating in the polymorphic behavior are not predetermined
(other termsfor this concept are noninvasive or nonintrusive).
- Static meansthat the binding of the interfacesis done a compiletime (Saticaly).
So, gtrictly speaking, in C++ parlance, dynamic polymorphism and gtatic polymorphism are shortcuts for bounded
dynamic polymorphism and unbounded static polymorphism. In other languages other combinations exist (for

example, Smaltak provides unbounded dynamic polymorphism). However, in the context of C++, the more concise
terms dynamic polymorphism and static polymorphism do not cause confusion.

Strengths and Weaknesses

Dynamic polymorphism in C++ exhibits the following strengths:

Heterogeneous collections are handled e egantly.

The executable code Size is potentially smaller (because only one polymorphic function is needed, whereas
distinct template instances must be generated to handle different types).
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14.4 New Forms of Design Patterns

The new form of static polymorphism leads to new ways of implementing design patterns. Take, for example, the
bridge pattern, which playsamagor rolein C++ programs. One goa of using the bridge pattern isto switch between
different implementations of an interface. According to [ DesignPetternsGoV | thisis usudly done by using apointer to
refer to the actual implementation and delegating dl callsto this class (see Figure 14.3).

Figure 14.3. Bridge patter n implemented using inheritance

Interface Implementation

—.:' virlual operationAf) = 0;

virual operationB(} = 0;

Implementation® body;

operationdl) { virlual operationC() = O;

body-=oparationi)
'f i
oparationBi) {

body-operationd]) | |

body-=oparationC()

Implementation A

) Implementation B

However, if thetype of the implementation isknown at compile time, you could use the approach viatemplates

wirlual operationi |
virlual oparationB()
virtual operationc|)

virtual operationdl )
virtual oparationB(}
virtual aparationC(};

instead (see Figure 14.4). Thisleads to more type safety, avoids pointers, and should be faster.
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Figure 14.4. Bridge patter n implemented using templates
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14.5 Generic Programming

Static polymorphism leads to the concept of generic programming. However, there isno one universally agreed-on
definition of generic programming (just asthereisno one agreed-on definition of object-oriented programming).
According to [ Czarnecki EiseneckerGenProg], definitions go from programming with generic parametersto finding
the most abstract representation of efficient dgorithms. The book summarizes:

Generic programming is asubdiscipline of computer science that dealswith finding abstract representations of
efficient algorithms, data structures, and other software concepts, and with their systematic organization . Generic
programming focuses on representing families of domain concepts. (pages 169 and 170)

In the context of C++, generic programming is sometimes defined as programming with templates (whereas
object-oriented programming is thought of as programming with virtua functions). In this sense, just about any use of
C++ templates could be thought of as an instance of generic programming. However, practitioners often think of
generic programming as having an additiona essentia ingredient: Templates haveto be desgned in aframework for
the purpose of enabling amultitude of useful combinations.

By far the mogt significant contribution inthisareaisthe STL (the Standard Template Library, which later was
adapted and incorporated into the C++ standard library). The STL isaframework that provides a number of useful
operations, called agorithms, for anumber of linear data structures for collections of objects, called containers. Both
agorithms and containers are templates. However, the key isthat the algorithms are not member functions of the
containers. Instead, the algorithms are written in ageneric way so that they can be used by any container (and linear
collection of eements). To do this, the designers of STL identified an abstract concept of iterators that can be
provided for any kind of linear collection. Essentidly, the collection-specific aspects of container operations have
been factored out into theiterators functionadlity.

As a conseguence, implementing an operation such as computing the maximum val ue in a sequence can be done
without knowing the details of how vaues are stored in that sequence:

tenpl ate <class Iterator>
Iterator max_el enent (lterator beg, I/l refers to start of collection
Iterator end) /1 refers to end of collection

{
/1 use only certain Iterator's operations to traverse all elenents
/1 of the collection to find the element with the maxi num val ue
/1 and return its position as Iterator

}

Instead of providing al useful operations such as max_element() by every linear container, the container hasto
provide only an iterator type to traverse the sequence of valuesit contains and member functionsto create such
iterators.

nanespace std {

templ ate <class T, >
cl ass vector {
public:
t ypedef const _iterator; /1 implenentation-specific iterator

/1 type for constant vectors
const _iterator begin() const; // iterator for start of collection
const _iterator end() const; /] iterator for end of collection









14.6 Afternotes

Container types were a primary motivation for the introduction of templatesinto the C++ programming language.
Prior to templates, polymorphic hierarchies were a popular approach to containers. A popular example wasthe
Nationd Indtitutes of Hedlth Class Library (NIHCL), which to alarge extent trandated the container class hierarchy
of Smdltak (see Figure 14.5).

Figure 14.5. Class hierarchy of the NIHCL

Object
I I
tarator Callaction
Iterabor (Callecliond) wirlual waid doResel (Neralord)
woid resaly} wirual Object” doMest (|leratord)
Object™ oparalars++ () wirlual waid daFmish (Ieralorg)
Oirject™ oparatar) ()
SeqClin Bag Sat
Stack LinkedList OrderedClin IdentSat Dictisnary
SortedClin IdentDict

Much like the C++ standard library, the NIHCL supported arich variety of containers aswell asiterators. However,
the implementation followed the Smdltalk style of dynamic polymorphism: Iterators used the abstract base class
Collection to operate on different types of collections:

Bag c1,
Set c2;

Iterator i1(s);
Iterator i2(b);

Unfortunately, the price of this gpproach was high both in terms of running time and memory usage. Running time was
typicaly orders of magnitude worse than equivaent code using the C++ standard library becauise most operations
ended up requiring avirtua call (whereasin the C++ standard library many operations are inlined, and no virtua
functions areinvolved in iterator and container interfaces). Furthermore, because (unlike Smalltalk) the interfaces
were bounded, built-in types had to be wrapped in larger polymorphic classes (such wrappers were provided by the
NIHCL), whichin turn could lead to dramatic increases in storage requirements.

Some sought solace in macros, but even in today's age of templates many projects still make suboptima choicesin
their gpproach to polymorphism. Clearly there are many stuations when dynamic polymorphismisthe "right choice.”
Heterogeneous iterations are an example. However, in the same vein, many programming tasks are naturally and
efficiently solved using templates, and homogeneous containers are an example of this.

Static polymorphism lendsitself well to code very fundamental computing structures. In contrast, the need to choose
acommon base type implies that a dynamic polymorphic library will normally have to make domain-specific choices.
It's no surprise then that the STL part of the C++ standard library never included polymorphic containers, but it

contains arich set of containers and iterators that use static polymorphism (as demonstrated in Section 14.5 on page
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Chapter 15. Traitsand Policy Classes

Templates enable usto parameterize classes and functions for varioustypes. It could be tempting to introduce as
many template parameters as possible to enable the customization of every aspect of atype or dgorithm. In thisway,
our "templatized" components could be instantiated to meet the exact needs of client code. However, from apractica
point of view it israrely desirable to introduce dozens of template parameters for maxima parameterization. Having
to specify al the corresponding argumentsin the client codeis overly tedious.

Fortunately, it turns out that most of the extra parameters we would introduce have reasonable default vaues. In
some cases the extra parameters are entirely determined by afew main parameters, and well seethat such extra
parameters can be omitted altogether. Other parameters can be given default vaues that depend onthe main
parameters and will meet the needs of most situations, but the default values must occasionally be overridden (for
specia applications). Y et other parameters are unrelated to the main parameters: In a sense they are themsaves main
parameters, except for the fact that there exist default vauesthat dmost dwaysfit the bill.

Policy classesand traits (or traits templates) are C++ programming devicesthat greetly facilitate the management of
the sort of extra parameters that come up in the design of industria-strength templates. In this chapter we show a
number of Stuationsin which they prove ussful and demonstrate various techniques that will enable you to write
robust and powerful devices of your own.
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15.1 An Example: Accumulating a Sequence

Computing the sum of asegquence of valuesisafarly common computationd task. However, this seemingly smple
problem provides us with an excellent example to introduce various levels at which policy classes and traits can help.

15.1.1 Fixed Traits

Let'sfirst assume that the values of the sum we want to compute are stored in an array, and we are given a pointer to
thefirst element to be accumulated and a pointer one past the last €lement to be accumulated. Because thisbook is
about templates, we wish to write atemplate that will work for many types. The following may seem sraightforward

by now [1]:

[1] Most examplesin this section use ordinary pointersfor the sake of smplicity. Clearly, an industrial-strength
interface may prefer to useiterator parameters following the conventions of the C++ standard library (see|
JosuttistdL ib]). Werevisit this aspect of our example later.

/] traits/accumdl. hpp

#i f ndef ACCUM_HPP
#defi ne ACCUM_HPP

tenpl ate <typename T>

inline
T accum (T const* beg, T const* end)
{
T total = T(); // assume T() actually creates a zero val ue

while (beg !'= end) {
total += *beg;
++beg;

}

return total;

}

#endi f // ACCUM HPP

The only dightly subtle decision hereis how to create a zero value of the correct type to start our summation. We use
the expression T() here, which normally should work for built-in numeric typeslikeint and float (see Section 5.5 on

page 56).

To motivate our firg traits template, consider the following code that makes use of our accum():

/'l traits/accumdl. cpp

#i ncl ude "accumdl. hpp"
#i ncl ude <i ostreanp

int main()

{

Il create array of 5 integer val ues
int nun]1={1, 2,3, 4,5};

/'l print average val ue

std::cout << "the average value of the integer values is "
<< accun(&un{0], &un{5]) / 5
< "\n'









15.2 Type Functions

Theinitid traits example demonstrates that you can define behavior that depends on types. Thisisdifferent from what
you usualy implement in programs. In C and C++, functions more exactly can be called vaue functions. They take
some values as parameters and return another value as aresult. Now, what we have with templates are type
functions: afunction that takes some type arguments and produces atype or constant as aresult.

A very useful built-in type function is Szeof, which returns a constant describing the size (in bytes) of the given type
argument. Class templates can a so serve astype functions. The parameters of the type function are the template
parameters, and the result is extracted as amember type or member constant. For example, the sizeof operator
could be given thefollowing interface:

/1 traits/sizeof.cpp

#1 ncl ude <stddef. h>
#1 ncl ude <i ostreanp

tenpl ate <typename T>
cl ass TypeSi ze {
public:
static size_t const value = sizeof(T);

H
int main()
{
std::cout << "TypeSi ze<int>::value ="
<< TypeSi ze<i nt >::val ue << std::endl
}

In what follows we develop afew more generd-purpose type functions that can be used astraits classesin thisway.

15.2.1 Deter mining Element Types

For another example, assume that we have anumber of container templates such as vector<T>, lit<T>, and
sack<T>. Wewant atype function that, given such acontainer type, produces the element type. This can be
achieved usng partid soecidization:

/1 traits/elementtype.cpp

#i ncl ude <vector>
#i ncl ude <list>

#i ncl ude <stack>

#i ncl ude <i ostreane
#i ncl ude <typei nfo>

tenpl ate <typenane T>
cl ass El enentT; [l primary tenpl ate

tenpl ate <typenane T>
class Elenment T<std::vector<T> > { // partial specialization
public:
typedef T Type;
H

tenpl ate <typenane T>
class Element T<std::list<T> > { /] partial specialization
public:
tvpedef T Tvpe:









15.3 Policy Traits

So far, our examples of traits templates have been used to determine properties of template parameters. what sort of
type they represent, to which type they should promote in mixed-type operations, and so forth. Such traitsare called

property traits.

In contrast, some traits define how some types should be treated. We cal them policy traits. Thisis reminiscent of the
previoudy discussed concept of policy classes (and we dready pointed out that the distinction between traitsand
policiesis not entirely clear), but policy traits tend to be more unique properties associated with atemplate parameter
(whereas policy classes are usudly independent of other template parameters).

Although property traits can often be implemented as type functions, policy traits usualy encapsulate the policy in
member functions. Asafirg illugtration, let'slook at atype function that definesa policy for passing read-only
parameters.

15.3.1 Read-only Parameter Types

In C and C++, function call arguments are passed "by vaue' by default. This meansthat the values of the arguments
computed by the caler are copied to locations controlled by the callee. Most programmers know that this can be
costly for large structures and that for such structuresit is appropriate to pass the arguments "by reference-to-const”
(or "by pointer-to-congt” in C). For smaller structures, the picture is not aways clear, and the best mechanism from a
performance point of view depends on the exact architecture for which the code is being written. Thisisnot so
critical in most cases, but sometimes even the smal structures must be handled with care.

With templates, of course, things get alittle more ddlicate: We don't know apriori how large the type substituted for
the template parameter will be. Furthermore, the decision doesn't depend just on sze: A smdll structure may come
with an expensive copy constructor that would still justify passing read-only parameters by reference-to-const.”

Ashinted at earlier, this problem is conveniently handled using apolicy traits template that is atype function: The
function maps an intended argument type T onto the optimal parameter type T or T const& . As afirst gpproximation,
the primary template can use "by vaue' passing for types no larger than two pointers and "by reference-to-const” for

everything dse

t enpl at e<t ypenane T>
cl ass RParam {
public:
typedef typenane |fThenEl se<si zeof (T)<=2*si zeof (voi d*),
Tl
T const&>::ResultT Type;

}

On the other hand, container types for which sizeof returnsasmall vaue may involve expensive copy constructors.
So we may need many specidizations and partid specidizations, such asthe following:

t enpl at e<t ypenane T>
cl ass RParamxArray<T> > {
public:
t ypedef Array<T> const& Type;
b

Because such types are common in C++. it mav be safer to mark nonclasstypes "by vaue' in the primary template
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15.4 Afternotes

Nathan Myerswasthefirg to formalize theidea of traits parameters. He originally presented them to the C++
standardization committee as avehicle to define how character types should be treated in standard library
components (for example, input and output streams). At that time he caled them baggage templates and noted that
they contained traits. However, some C++ committee members did not like the term baggage, and the name traits
was promoted instead. The latter term has been widdly used since then.

Client code usually does not dedl with traitsat al: The default traits classes satisfy the most common needs, and
because they are default template arguments, they need not appear in the client source at al. Thisarguesin favor of
long descriptive names for the default traits templates. When client code does adapt the behavior of atemplate by
providing a custom traits argument, it is good practice to typedef the resulting specidizationsto anamethat is
appropriate for the custom behavior. In this case the traits class can be given along descriptive name without
sacrificing too much source estate.

Our discussion has presented traits templates as being class templates exclusively. Strictly speaking, this does not
need to be the case. If only asingle palicy trait needsto be provided, it could be passed as an ordinary function
template. For example:

tenpl ate <typenanme T, void (*Policy)(T const& T consté&)>
class X

However, the origind god of traits was to reduce the baggage of secondary template arguments, which is not
achieved if only agingletrait isencapsulated in atemplate parameter. Thisjustifies Myerss preferencefor theterm
baggage as a collection of traits. Werevisit the problem of providing an ordering criterion in Chapter 22.

The standard library defines aclasstemplate std::char_traits, which isused asapolicy traits parameter. To adapt
agorithmseasly to thekind of STL iteratorsfor which they are used, avery smple std::iterator_traits property traits
templateis provided (and used in standard library interfaces). The template std::numeric_limits can dso be useful asa
property traitstemplate, but it is not visibly used in the standard library proper. The classtemplates
gd::unary_function and std::binary_function fal in the same category and are very smple type functions: They only
typedef their arguments to member names that make sense for functors (also known as function objects, see Chapter
22). Lastly, memory dlocation for the standard container typesis handled using apalicy traits class. The template
std::alocator is provided as the standard item for this purpose.

Policy classes have apparently been developed by many programmers and afew authors. Andrei Alexandrescu
made the term policy classes popular, and his book Modern C++ Design covers them in more detail than our brief
section (see [ AlexandrescuDesign]).
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Chapter 16. Templatesand Inheritance

A priori, there might be no reason to think that templates and inheritance interact in interesting ways. If anything, we
know from Chapter 9 that deriving from dependent base classes forces usto deal carefully with unqualified names.
However, it turns out that some interesting techniques make use of so-caled parameterized inheritance. Inthis
chapter we describe afew of these techniques.
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16.1 Named Template Arguments

Various template techniques sometimes cause a class template to end up with many different template type
parameters. However, many of these parameters often have reasonable default values. A natura way to define such a
classtemplate may look asfollows:

tenpl at e<t ypenane Policyl
typenane Policy2
typenane Policy3
typenane Policy4
class BreadSlicer {

Def aul t Pol i cy1,
Def aul t Pol i cy2,
Def aul t Pol i cy3,
Def aul t Pol i cy4>

}s

Presumably, such atemplate can often be used with the default template argument values using the syntax
BreadSlicer<>. However, if anondefault argument must be specified, all preceding arguments must be specified too
(even though they may have the default vaue).

Clearly, it would be attractive to be able to use a construct akin to BreadSlicer<Policy3 = Custom> rather than
BreadSlicer<DefaultPolicyl, DefaultPolicy2, Custom> asisthe case right now. In what followswe develop a
technique to enable dmost exactly that. [1]

[1] Notethat asmilar language extension for function call arguments was proposed (and rejected) earlier in the C++
standardization process (see Section 13.9 on page 216 for details).

Our technique consgts of placing the default type vauesin abase class and overriding some of them through
derivation. Instead of directly specifying the type arguments, we provide them through helper classes. For example,
we could write BreadSlicer<Policy3_is<Custom> >. Because each template argument can describe any of the
policies, the defaults cannot be different. In other words, at ahigh level every template parameter is equivalent:

tenpl ate <typenane PolicySetterl
typenane PolicySetter2
typenane PolicySetter3
typenane PolicySetter4

class BreadSlicer {
typedef PolicySel ector<PolicySetterl, PolicySetter2,
Pol i cySetter3, PolicySetter4>

Def aul t Pol i cyAr gs,
Def aul t Pol i cyAr gs,
Def aul t Pol i cyAr gs,
Def aul t Pol i cyAr gs>

Pol i ci es;
/1 use Policies::P1l, Policies::P2, to refer to the various policies

};

The remaining challenge isto write the PolicySdector template. It hasto merge the different template argumentsinto
asingletypethat overrides default typedef members with whichever non-defaults were specified. This merging can be
achieved usng inheritance:

/1 PolicySelector<A B,C D> creates A B,C, D as base cl asses
/1 Discrimnator<> allows having even the sanme base class nore than once

t enpl at e<t ypenane Base, int D>
class Discrimnator : public Base {

}s

tenpl ate <typenane Setterl, typename Setter?2,

typenane Setter3, typenane Setter4>
cl ace Poli ev<el eactor * nithlie Dicerim nat nor<<ettaearl1 1>









16.2 The Empty Base Class Optimization (EBCO)

C++ clases are often "empty," which meansthat their interna representation does not require any bits of memory at
runtime. Thisisthe casetypicaly for classesthat contain only type members, nonvirtua function members, and static
datamembers. Nongtatic data members, virtua functions, and virtual base classes, on the other hand, do require
some memory & runtime.

Even empty classes, however, have nonzero size. Try the following programif you'd liketo verify this:
/1 inherit/enpty.cpp
#i ncl ude <i ostreanr

class Enptyd ass {

}5
int main()
{
std::cout << "sizeof (Enmptyd ass): " << sizeof (Enptyd ass)
<< '\n';
}

For many platforms, this program will print 1 as size of EmptyClass. A few systemsimpose more gtrict aignment
requirements on class types and may print another smal integer (typicaly, 4).

16.2.1 Layout Principles

The designers of C++ had various reasons to avoid zero-size classes. For example, an array of zero-size classes
would presumably have size zero too, but then the usua properties of pointer arithmetic would not apply anymore.
For example, let's assume ZeroSizedT isazero-Szetype:

Zer 0Si zedT z[ 10];

&[] - &z[j] /1 compute distance between pointers/addresses

Normaly, the differencein the previous exampleis obtained by dividing the number of bytes between thetwo
addresses by the Size of the type to which it is pointing, but when that Szeis zero thisis clearly not satisfactory.

However, even though there are no zero-size types in C++, the C++ standard does specify that when an empty class
Isused as a base class, no space needs to be allocated for it provided that it does not cause it to be allocated to the
same address as another object or subobject of the sametype. Let'slook at some examplesto clarify what this
so-caled empty base class optimization (or EBCO) meansin practice. Consder the following program:

/1 inherit/ebcol. cpp
#i ncl ude <i ostreanp
class Enpty {
typedef int Int; // typedef nmenmbers don't nmake a cl ass nonenpty
b
class EnptyToo : public Enmpty {
b

class EnptyThree : public EnptyToo {
H









16.3 The Curioudly Recurring Template Pattern (CRTP)

This oddly named pattern refersto ageneral class of techniques that consists of passing aderived class asatemplate
argument to one of its own base classes. In its smplest form, C++ code for such a pattern looks asfollows:

tenpl ate <typenane Derived>
cl ass CuriousBase {

H
class Curious : public CuriousBase<Curious> {
H

Our firgt outline of CRTP shows a nondependent base class: The class Curiousis not atemplate and istherefore
immune to some of the name vishility issues of dependent base classes. However, thisisnot an intringc characteristic
of CRTP. Indeed, we could just aswell have used the following dternative outline:

tenpl ate <typenane Derived>
cl ass CuriousBase {

};

tenpl ate <typenane T>
class CuriousTenplate : public CuriousBase<CuriousTenpl ate<T> > {

};

From this outline, however, it isnot afar stretch to propose yet another dternative formulation, thistimeinvolving a
template template parameter:

tenpl ate <tenpl at e<t ypenane> cl ass Derived>
cl ass MoreCuriousBase {

}s

tenpl ate <typenanme T>
cl ass MoreCurious : public MreCuriousBase<MoreCurious> {

}s

A smple agpplication of CRTP congsts of keegping track of how many objects of a certain class type were created.
Thisiseasly achieved by incrementing an integral static datamember in every congructor and decrementing it in the
destructor. However, having to provide such code in every classistedious. Instead, we can write the following
template:

/1 inherit/objectcounter. hpp
#i ncl ude <stddef. h>

tenpl ate <typenane CountedType>
cl ass bj ect Counter {
private:
static size_t count; /1 nunmber of existing objects

pr ot ect ed:
/1 default constructor
oj ect Counter () {
++Cbj ect Count er <Count edType>: : count ;
}
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16.4 Parameterized Virtuality

C++ dlows usto parameterize directly three kinds of entities through templates: types, constants ("nontypes"), and
templates. However, indirectly, it also alows usto parameterize other attributes such asthe virtudity of amember
function. A smple example showsthisrather surprising technique:

[l inherit/virtual.cpp
#i ncl ude <i ostreanp

class NotVirtual ({
H

class Virtual {
public:
virtual void foo() {
}
H

tenpl ate <typenanme VBase>
cl ass Base : private VBase {
public:
/1 the virtuality of foo() depends on its declaration
/1 (if any) in the base class VBase
void foo() {
std::cout << "Base::foo()" << '\n'
}

}s

tenpl ate <typenane V>
class Derived : public Base<V> {

public:
void foo() {
std::cout << "Derived::foo()" << '\n'

}

b

int nmain()

{
Base<Not Vi rtual >* pl = new Deri ved<Not Vi rtual >
pl->foo(); // calls Base::foo()
Base<Virtual >* p2 = new Derived<Virtual >
p2->foo(); // calls Derived::foo()

}

This technique can provide atool to design a class template that is usable both to instantiate concrete classes and to
extend usng inheritance. However, it isrardy sufficient just to sprinkle virtuality on some member functionsto obtain
aclassthat makes agood base class for more specidized functionality. This sort of development method requires
more fundamental design decisons. It istherefore usualy more practical to design two different tools (class or class
template hierarchies) rather than trying to integrate them dl into one template hierarchy.
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16.5 Afternotes

Named template arguments are used to Smplify certain class templatesin the Boost library. Boost uses
metaprogramming to create atype with properties smilar to our PolicySd ector (but without using virtua inheritance).
The smpler dternative presented here was developed by one of us (Vandevoorde).

CRTPshave beenin usesnce a least 1991. However, James Coplien was first to describe them formally asaclass
of so-called patterns (see [ CoplienCRTP]). Since then, many applications of CRTP have been published. The phrase
parameterized inheritance is sometimes wrongly equated with CRTP. Aswe have shown, CRTP does not require the
derivation to be parameterized at dl, and many forms of parameterized inheritance do not conform to CRTP. CRTP
is aso sometimes confused with the Barton-Nackman trick (see Section 11.7 on page 174) because Barton and
Nackman frequently used CRTP in combination with friend name injection (and the latter is an important component
of the Barton-Nackman trick). Our ObjectCounter example isamost identical to atechnique developed by Scott
Meyersin [ MeyersCounting].

Bill Gibbonswas the main sponsor behind the introduction of EBCO into the C++ programming language. Nathan
Myers made it popular and proposed atemplate smilar to our BaseMemberPair to take better advantage of it. The
Boost library contains a considerably more sophisticated template, called compressed pair, that resolves some of the
problems we reported for the MyClass template in this chapter. boost::compressed _pair can aso be used instead of
our BaseMemberPair.
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Chapter 17. Metaprograms

Metgprogramming consists of "programming aprogram.” In other words, we lay out code that the programming
System executes to generate new code that implements the functiondity we redlly want. Usually theterm
metaprogramming implies areflexive atribute: The metgprogramming component is part of the program for which it
generates a bit of code/program.

Why would metaprogramming be desirable? Aswith most other programming techniques, the god isto achieve more
functiondity with less effort, where effort can be measured as code size, maintenance cost, and so forth. What
characterizes metgprogramming is that some user-defined computation happens at trandation time. The underlying
motivation is often performance (things computed at trandation time can frequently be optimized away) or interface
samplicity (ametaprogram is generaly shorter than what it expandsto) or both.

Metaprogramming often relies on the concepts of traits and type functions as developed in Chapter 15. We therefore
recommend getting familiar with that chapter prior to deving into thisone.
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17.1 A First Example of a Metaprogram

In 1994 during amesting of the C++ standardization committee, Erwin Unruh discovered that templates can be used
to compute something a compiletime. He wrote a program that produced prime numbers. Theintriguing part of this
exercise, however, was that the production of the prime numbers was performed by the compiler during the
compilation process and not at run time. Specificaly, the compiler produced a sequence of error messageswith dl
prime numbers from two up to a certain configurable value. Although this program wasn't gtrictly portable (error
messages aren't tandardized), the program did show that the template ingtantiation mechanism isa primitive recursive
language that can perform nontrivia computations at compile time. This sort of compile-time computation that occurs
through template ingantiation is commonly caled template metaprogramming.

Asan introduction to the details of metgprogramming we start with asmple exercise (we will show Erwin's prime
number program later on page 318). The following program shows how to compute at compile time the power of
threefor agivenvaue:

/1 metal pow3. hpp

#i f ndef POMB_HPP
#defi ne POMNB_HPP

/1 primary tenplate to conpute 3 to the Nth
tenpl ate<int N>
cl ass Pow3 {
public:
enum { resul t=3*Pow3<N-1>::result };

}

/1 full specialization to end the recursion
templ at e<>
cl ass Pow3<0> {
public:
enum{ result =1 };

}s
#endi f // POAB_HPP

The driving force behind template metaprogramming is recursve template ingtantiation. [1] In our program to
compute 3N , recursive template instantiation is driven by the following two rules:

[1] We saw an example of arecursive templatein Section 12.4 on page 200. It could be considered asimple case of
metaprogramming.

1.

3N=3*3N-1

Thefirg template implementsthe generd recursiverule:

tenpl ate<int N>
cl ass Pow3 {
public:









17.2 Enumeration Values ver sus Static Constants

In old C++ compilers, enumeration va ues were the only available possbility to have "true constants’ (so-caled
congtant-expressions) insde class declarations. However, this has changed during the standardization of C++, which
introduced the concept of in-class satic congtant initidizers. A brief exampleillustrates the construct:

struct TrueConstants {
enum { Three = 3 };
static int const Four = 4;

}s

In thisexample, Four isa"true congtant"—just asis Three.

With this, our Pow3 metaprogram may aso look asfollows:

/1 metal pow3b. hpp

#i f ndef POMB_HPP
#defi ne PONB_HPP

/[l primary tenplate to conpute 3 to the Nth
tenpl ate<i nt N>
class Pow3 {
public:
static int const result = 3 * Pow3d<N-1>::result;
b

/'l full specialization to end the recursion
tenpl at e<>
cl ass Pow3<0> {
public:
static int const result = 1;
H

#endif // PONB_HPP

The only differenceisthe use of static constant membersinstead of enumeration values. However, thereisa
drawback with this version: Static constant members are lvaues. So, if you have adeclaration such as

voi d foo(int const&);
and you passit the result of ametaprogram
f oo(Pow3d<7>::result);

acompiler must pass the address of Pow3<7>::result, which forces the compiler to instantiate and alocate the
definition for the static member. Asaresult, the computation isno longer limited to a pure "compile-time" effect.

Enumeration values aren't Ivalues (that is, they don't have an address). So, when you pass them "by reference,” no
gatic memory isused. It'samogt exactly asif you passed the computed value as aliteral. These congderations
motivate usto use enumeration valuesin al metaprograms throughout this book.

Ru-Brd






17.3 A Second Example: Computing the Square Root

Letslook at adightly more complicated example: ametaprogram that computes the square root of agiven valueN .
The metaprogram looks as follows (explanation of the technique follows):

/1 metalsqrtl. hpp

#i f ndef SQRT_HPP
#defi ne SQRT_HPP

/[l primary tenplate to conpute sqgrt(N)
tenplate <int N, int LO=1, int H =N>
class Sqrt {
public:
/1 conpute the m dpoint, rounded up
enum{ md = (LOtH +1)/2 };

/!l search a not too large value in a halved interval
enum { result = (N<md*md) ? Sqrt<N, LO mid-1>: :result
Sqrt<N,md,H > :result };

};

/1 partial specialization for the case when LO equals H
tenplate<int N, int M
class Sqrt<N, M M> {
public:
enum { result=M;

};

#endif // SQRT_HPP

Thefirst templateisthe genera recursive computation thet isinvoked with the template parameter N (the value for
which to compute the square root) and two other optiona parameters. The latter represent the minimum and
maximum values the result can have. If the template is called with only one argument, we know that the squareroot is
at least one and at mogt the value itself.

Our recursion then proceeds using a binary search technique (often called method of bisection in this context). Inside
the template, we compute whether result isin thefirst or the second half of the range between LO and HI. Thiscase
differentiation is done using the conditiona operator ?:. If mid2 is greater than N, we continue the search in thefirst
half. If mid2 islessthan or equal to N, we use the same template for the second haf again.

The specidization that ends the recursive processisinvoked when LO and HI have the same vaue M, which isour
find result.

Again, let'slook at the details of asmple program that uses this metaprogram:

/1 metalsqrtl.cpp

#i ncl ude <i ostreane
#i ncl ude "sqrt 1. hpp"

int main()
{
std::cout << "Sqrt<l6>::result =" << Sqrt<16>::result
<< '"\n';
std::cout << "Sqrt<25>::result =" << Sqrt<25>::result

<< '\'n';









17.4 Using Induction Variables

Y ou may argue that the way the metaprogram iswritten in the previous example looks rather complicated. And you
may wonder whether you have learned something you can use whenever you have aproblem to solve by a
metaprogram. So, let'slook for amore "naive’ and maybe "moreiterative’ implementation of ametaprogram that
computes the square root.

A "naveiterative dgorithm" can be formulated asfollows. To compute the square root of agiven vaue N, wewritea
loop inwhich avariable | iterates from oneto N until its square is equa to or greater than N. Thisvauel isour
squareroot of N. If we formulate this problem in ordinary C++, it looks asfollows:

int |;
for (I=1; I*I<N, ++l) {

}

/1 1 now contains the square root of N

However, as ametaprogram we have to formulate thisloop in arecursive way, and we need an end criterion to end
the recursion. Asaresult, an implementation of thisloop as ametaprogram looks as follows:

/1 metalsqrt3. hpp

#i f ndef SQRT_HPP
#define SQRT_HPP

/1 primary tenplate to conpute sqrt(N) via iteration
tenplate <int N, int |=1>
class Sqrt {
public:
enum{ result = (1*I<N) ? Sgrt<N, | +1>: :result
S
H

/] partial specialization to end the iteration
tenpl ate<int N>
class Sqrt<N, N> {
public:
enum{ result = N };

}

#endif // SQRT_HPP

Weloop by "iterating” | over Sgrt<N,I>. Aslong as1*I<N yieldstrue, we use the result of the next iteration
Sort<N,I+1>::result asresult. Otherwise | isour result.

For example, if we evaluate Sgrt<16> this gets expanded to Sqrt<16,1>. Thus, we start an iteration with oneasa
vaue of the so-called induction varigble I. Now, aslong as 12 (that is1*1) islessthan N, we use the next iteration
vaue by computing Sgrt<N,I+1>::result. When 12 isequd to or greater than N we know that | isthe result.

Y ou may wonder why we need atemplate specidization to end the recursion because the first template dways,
sooner or later, finds | astheresult, which seemsto end the recursion. Again, thisisthe effect of the ingtantiation of
both branches of operator ?:, which was discussed in the previous section. Thus, the compiler computes the result of
Sort<4> by ingantiating asfollows:
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17.5 Computational Completeness

The Pow3<> and Sgrt<> examples show that atemplate metaprogram can contain:

State variables: the template parameters

Loop congtructs: through recursion

Peth selection: by using conditiona expressons or specidizations

Integer arithmetic

If there are no limits to the amount of recursive ingtantiations and the amount of sate variablesthat are alowed, it can
be shown that thisis sufficient to compute anything that is computable. However, it may not be convenient to do so
using templates. Furthermore, template ingtantiation typically requires substantial compiler resources, and extensive
recursve instantiation quickly dows down acompiler or even exhausts the resources available. The C++ stlandard
recommends but does not mandate that 17 levels of recursive ingtantiations be alowed asaminimum. Intensve
template metgprogramming easly exhaugts such alimit.

Hence, in practice, template metaprograms should be used sparingly. The are afew stuations, however, when they
areirreplacesble asatool to implement convenient templates. In particular, they can sometimes be hidden in the
innards of more conventiona templates to squeeze more performance out of critica agorithm implementations.
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17.6 Recursive | nstantiation versus Recursive Template Arguments

Condder thefollowing recursvetemplate:

tenpl at e<typenane T, typenane U>
struct Doublify {};

tenpl ate<i nt N>
struct Trouble {
typedef Doublify<typenane Troubl e<N- 1>::LongType,
typenanme Troubl e<N-1>:: LongType> LongType;

}s

tenpl at e<>
struct Troubl e<0> {
t ypedef doubl e LongType;

}s

Tr oubl e<10>: : LongType ouch

The use of Trouble<10>::LongType not only triggersthe recursive ingtantiation of Trouble<9>, Trouble<8>, ,
Trouble<0>, but it o ingtantiates Doublify over increasingly complex types. Indeed, Table 17.1 illudrates how
quickly it grows.

As can be seen from Table 17.1, the complexity of the type description of the expression Trouble<N>::LongType
grows exponentialy with N. In general, such a stuation stresses a C++ compiler even more than recursive
ingtantiations that do not involve recursive template arguments. One of the problems hereisthat acompiler kegpsa
representation of the mangled namefor the type. This mangled name encodes the exact template specidizationin
someway, and early C++ implementations used an encoding that is roughly proportiona to the length of the
template-id. These compilersthen used well over 10,000 charactersfor Trouble<10>::LongType.

Newer C++ implementations take into account the fact that nested template-ids are fairly common in modern C++
programs and use clever compression techniques to reduce considerably the growth

Table 17.1. Growth of Trouble<N>::LongType

Typedef Name Underlying Type
Tr oubl e<0>: : LongType doubl e
Troubl e<1>:: LongType Doubl i f y<doubl e, doubl e>
Tr oubl e<2>:: LongType Doubl i f y<Doubl i f y<doubl e, doubl e>,
Doubl i f y<doubl e, doubl e> >
Tr oubl e<3>:: LongType Doubl i f y<Doubl i f y<Doubl i f y<doubl e, doubl e>,

Doubl i f y<doubl e, doubl e>
>1
<Doubl i f y<doubl e, doubl e>,
Doubl i f y<doubl e, doubl e>

in name encoding (for example, afew hundred charactersfor Trouble<10>::LongType). Sill, al other things being
equd, it isprobably preferable to organize recursive ingantiation in such away that template arguments need not a'so
be nested recursively.









17.7 Using M etaprogramsto Unroll Loops

One of thefirgt practical applications of metaprogramming was the unrolling of loops for numeric computations,
which is shown here as a complete example.

Numeric gpplications often have to process n-dimensiond arrays or mathematical vectors. Onetypica operationis
the computation of the so-called dot product. The dot product of two mathematica vectorsaand b isthe sum of dl
products of corresponding elementsin both vectors. For example, if each vectors has three d ements, theresult is

a[0] *b[0] + a[1]*b[1] + a[2]*b[2]

A mathematicd library typicaly provides afunction to compute such adot product. Consider the following
graightforward implementation:

/1 metalloopl. hpp

#i f ndef LOOP1_HPP
#defi ne LOOP1_HPP

tenpl ate <typenanme T>
inline T dot_product (int dim T* a, T* b)

{
T result = 0;
for (int i=0; i<dim ++i) {
result += a[i]*b[i];
}
return result;
}

#endi f // LOOP1_HPP

When we cdl thisfunction asfollows

/1 metall oopl.cpp

#i ncl ude <i ostreanp
#i ncl ude "I oopl. hpp"

int nmain()
{ int a[3] ={ 1, 2, 3 };
int b[3] ={ 5 6, 7};
std::cout << "dot_product(3,a,b) =" << dot_product(3,a,b)
std:: cout Zz "%gt;product(3,a,a) = " << dot_product (3, a, a)
<< '\n';

}
we get thefollowing result:

38
14

dot _product (3, a, b)
dot _product (3, a, a)

Thisiscorrect, but it takes too long for serious high-performance applications. Even declaring thefunction inlineis
often not sufficient to attain optimal performance.

The nrobhlem icthat comnilare 1 i 1l vy ontimi 7e |l onne for manyy 1terati one which e corn interorod ictivie 1n thie cace









17.8 Afternotes

As mentioned earlier, the earliest documented example of ametaprogram was by Erwin Unruh, then representing
Semens on the C++ standardization committee. He noted the computational completeness of the template
ingtantiation process and demonstrated his point by developing the first metaprogram. He used the Metaware
compiler and coaxed it into issuing error messages that would contain successive prime numbers. Hereisthe code
that was circulated at a C++ committee meeting in 1994 (modified so that it now compiles on standard conforming
compilers) [3]:

[3] Thanksto Erwin Unruh for providing the code for thisbook. Y ou can find the origind example at |
UnruhPrimeQrig].

/1 metal unruh. cpp
[l prime nunmber conputation by Erwin Unruh

tenplate <int p, int i>
class is_prinme {
public:
enum{ prim= (p==2) || (p%) && is_prime<(i>2?p:0),i-1>:prim
b
H

tenpl at e<>
class is_prinme<0, 0> {
public:
enum {pri nmrl};

}s

tenpl at e<>
class is_prine<0, 1> {
public:
enum {pri nmrl};

H
tenplate <int i>
class D {
public:
D(voi d*);
H
tenplate <int i>
class Prine_print { /1l primary tenplate for loop to print prinme nunbers
public:
Prime_print<i-1> a;
enum{ prim=is_prine<i,i-1>:prim
1
void f() {

D<i>d =prim? 1 : 0;
a. f();

}s

tenpl at e<>
class Prime_print<l> { // full specialization to end the |oop
public:
enum {pri m=0};
void f() {
D<1>d =prim? 1 : 0;
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Chapter 18. Expression Templates

In this chapter we explore atemplate programming technique called expression templates. It was originally invented
In support of numeric array classes, and that is also the context in which we introduceit here.

A numeric array class supports numeric operations on whole array objects. For example, it is possible to add two
arrays, and the result contains elements that are the sums of the corresponding valuesin the argument arrays.
Similarly, awhole array can be multiplied by a scadar, meaning that each dement of the array isscaled. Naturdly, it is
desirable to keep the operator notation that is so familiar for built-in scalar types:

Ar ray<doubl e> x(1000), y(1000);

X = 1.2*X + X*y,

For the serious number cruncher it iscrucia that such expressions be evaluated as efficiently as can be expected from
the platform on which the code is run. Achieving this with the compact operator notation of thisexampleisno trivia
task, but expression templateswill cometo our rescue.

Expresson templates are reminiscent of template metaprogramming. In part thisis due to the fact that expression
templates rely on sometimes deeply nested template ingtantiations, which are not unlike the recursive ingtantiations
encountered in template metaprograms. The fact that both techniques were originaly devel oped to support
high-performance (see our example using templates to unroll loops on page 314) array operations probably also
contributes to a sense that they are rdated. Certainly the techniques are complementary. For example,
metaprogramming is convenient for smdl, fixed-sze array whereas expresson templates are very effective for
operations on medium-to-large arrays Sized at run time.
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18.1 Temporariesand Split L oops

To motivate expression templates, let's sart with a straightforward (or maybe "naive") gpproach to implement
templates that enable numeric array operations. A basic array template might look asfollows (SArray standsfor
smplearay):

/'l exprtnpl/sarrayl. hpp

#i ncl ude <stddef. h>
#i ncl ude <cassert >

t enpl at e<t ypenane T>
class SArray {
public:
/] create array with initial size
explicit SArray (size_t s)
storage(new T[s]), storage_size(s) {
init();
}

/1 copy constructor

SArray (SArray<T> const& orig)
storage(new T[orig.size()]), storage_size(orig.size()) {
copy(orig);

}

/] destructor: free menory
~SArray() {

del ete[] storage
}

/] assignnment operator
SArray<T>& operator= (SArray<T> const& orig) {
if (&orig!=this) {
copy(orig);
}

return *this;

}

/1 return size

size_t size() const {
return storage_size;

}

/1 index operator for constants and variabl es
T operator[] (size_t idx) const {

return storage[idx];
}

T& operator[] (size_t idx) {
return storage[idx];
}

pr ot ect ed:
/1 init values with default constructor
void init() {
for (size_t idx = 0; idx<size(); ++idx) {
storage[idx] = T();
}

}

/1 copy val ues of another array

void copy (SArray<T> const& orig) {
assert(size()==orig.size());
for (size_t idx = 0; idx<size(); ++idx) {









18.2 Encoding Expressionsin Template Arguments

The key to resolving our problem is not to attempt to evaluate part of an expresson until the whole expression has
been seen (in our example, until the assignment operator isinvoked). Thus, before the eva uation we must record
which operations are being applied to which objects. The operations are determined at compile time and can
therefore be encoded in template arguments.

For our example expression
1.2*x + x*y;
thismeansthat the result of 1.2*x isnot anew array but an object that represents each value of x multiplied by 1.2.

Smilarly, x*y must yield each dement of x multiplied by each corresponding element of y. Findly, when we need the
vaues of the resulting array, we do the computation that we stored for later evauation.

Let'slook at a concrete implementation. With thisimplementation we transform the written expresson
1.2*x + x*y;
into an object with thefollowing type:

A Add< A Mil t <A Scal ar <doubl e>, Array<doubl e> >,
A Ml t <Array<doubl e>, Array<doubl e> > >

We combine anew fundamental Array classtemplate with classtemplatesA_Scdar, A_Add, and A_Mult. Y ou may
recognize a prefix representation for the syntax tree corresponding to this expression (see Figure 18.1). This nested

template-id represents the operations involved and the types of the objects to which the operations should be
applied. A_Scdar is presented later but is essentially just a placeholder for ascalar in an array expression.

Figure 18.1. Treerepresentation of expression 1.2*x+x*y

-]
-] -]
e ]

18.2.1 Operands of the Expression Templates

To complete the representation of the expression, we must store references to the argumentsin each of the A_Add
and A_Mult objects and record the value of the scalar inthe A_Scalar object (or areference thereto). Here are
possible definitions for the corresponding operands:

/1 exprtnpl/expropsl. hpp
#i ncl ude <stddef. h>
#i ncl ude <cassert >

/'l include helper class traits tenplate to select wether to refer to an
[l '"expression tenplate node'' either ''by value'' or ''by reference.’
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18.3 Performance and Limitations of Expression Templates

Tojustify the complexity of the expression template idea, we have dready invoked greatly enhanced performance on
arraywise operations. Asyou trace what happens with the expression templates, you'l find that many smal inline
functions call each other and that many small expression template objects are allocated on the call stack. The
optimizer must perform completeinlining and eimination of the small objectsto produce code that performs aswell
asmanualy coded loops. The latter feat isgill rare among C++ compilers at the time of thiswriting.

The expresson templates technique does not resolve al the problematic Stuations involving numeric operations on
arrays. For example, it does not work for matrix-vector multiplications of the form

X = A*X;

where x isacolumn vector of sizenand A isan n-by-n matrix. The problem hereisthat atemporary must be used
because each e ement of the result can depend on each eement of the origina x. Unfortunately, the expresson
template loop updates the first element of x right away and then uses that newly computed element to compute the
second ement, which iswrong. Thedightly different expresson

X = Ary;

on the other hand, does not need atemporary if x and y aren't diases for each other, which impliesthat a solution
would have to know the relationship of the operands at run time. Thisin turn suggests cresting arun-time structure
that represents the expression tree instead of encoding the tree in the type of the expression template. This approach
was pioneered by the NewMat library of Robert Davies (see [ NewMat]). It was known long before expression
templates were devel oped.

Expression templates aren't limited to numeric computations either. An intriguing gpplication, for example, is Jaskko
Jarvi and Gary Powell's Lambda Library (see[ LambdaL.ib]). Thislibrary uses sandard library function objects as
expression objects. For example, it alows usto write the following:

voi d | anbda_deno (std::vector<long*> & ones) {
std::sort(ones.begin(), ones.end(), *_1 > *_2);

}

This short code excerpt sortsan array inincreasing order of the value of what its e ements refer to. Without the
Lambdalibrary, wed have to define asmple (but cumbersome) specia-purpose functor type. Instead, we can now
use smpleinline syntax to express the operations we want to apply. In our example, 1 and 2 are placeholders
provided by the Lambda library. They correspond to elementary expression objectsthat are also functors. They can
then be used to construct more complex expressions using the techniques developed in this chapter.
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18.4 Afternotes

Expression templates were developed independently by Todd Vel dhuizen and David Vandevoorde (Todd coined the
term) at atime when member templates were not yet part of the C++ programming language (and it seemed at the
time that they would never be added to C++). This caused some problemsin implementing the assignment operator:
It could not be parameterized for the expression template. One technique to work around this consisted of
introducing in the expression templates a conversion operator to a Copier class parameterized with the expression
template but inheriting from a base class that was parameterized only in the ement type. This base classthen
provided a (virtual) copy_to interface to which the assgnment operator could refer. Here is a sketch of the
mechanism (with the template names used in this chapter):

t enpl at e<t ypenane T>
class Copierlnterface {
public:
virtual void copy_to(Array<T, SArray<T> >& const;

}s

t enpl at e<typenane T, typename X>
cl ass Copier : public CopierBase<T> {
public:
Copi er (X const &x): expr(x) {}
virtual void copy_to(Array<T, SArray<T> >&) const {
/1 inplementation of assignnment |oop

}

private:
X const &expr;

}s

tenpl at e<typename T, typename Rep = SArray<T> >
class Array {
public:
/1 del egat ed assi gnment oper at or
Array<T, Rep>& operator=(Copi er Base<T> const &b) {
b. copy_to(rep);

I

H
tenpl at e<t ypenane T, typenane Al, typename A2>
class A mult {
public:
operator Copier<T, A MIt<T, Al, A2> >();

}s

This adds another level of complexity and some additiona run-time cost to expression templates, but even so the
resulting performance benefits were impressive a thetime.

The C++ standard library contains a class template vaarray that was meant to be used for applications that would
justify the techniques used for the Array template developed in this chapter. A precursor of vaarray had been
designed with the intention that compilers aiming at the market for scientific computation would recognize the array
type and use highly optimized internal code for their operations. Such compilerswould have "understood” the typesin
some sense. However, this never happened (in part because the market in question isrelatively smal and in part
because the problem grew in complexity as vaarray became atemplate). Some time after the expression template
technique was discovered, one of us (Vandevoorde) submitted to the C++ committee aproposal that turned vaarray
essentidly into the Array template we developed (with many bells and whistlesingpired by the existing vaarray
functiondity). The proposal wasthefirst time that the concept of the Rep parameter was documented. Prior to this,
the arrays with actua storage and the expression template pseudo-arrays were different templates. When client code
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Part 1V: Advanced Applications

Templates can be used to develop el aborate libraries of e ementsthat connect in seamlessways. Nontemplate
libraries can often do such thingstoo. However, when it comesto small, fairly smple utilities that make everyday
programming easier, traditional procedural or object-oriented libraries are not away's viable because the overhead
needed to invoke the smple functiondity is disproportionate to the facility offered. The C preprocessor dlows some
of these"smple needs’ to be addressed, but often it is not quite adequate for the tasks at hand.

In this part we explore some smdl stand-aone utilities for which templates are an ided means of implementation:

A framework for type classficaion
Smart Pointers
Tuples

Functors

Our god isto demondtrate the techniques discussed earlier. We combine them and modify them to create genuindy
useful software components. However, our main topic isstill C++ Templates and not (for example) the devel opment
of acomplete C++ library. We hope the code we present is a useful tutorial and source of inspiration for C++ library
writers, but we don't claim that it isthe best choice for off-the-shelf components.
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Chapter 19. Type Classification

It is sometimes useful to be able to know whether atemplate parameter is abuilt-in type, a pointer type, or aclass
type, and so forth. In the following sections we devel op a generd-purpose type template that adlows usto determine
various properties of agiven type. Asaresult we will be able to write code like the following:

if (TypeT<T>::1sPtrT) {

}
else if (TypeT<T>::1sd assT) {
}

Furthermore, expressions such as TypeT<T>::1sPtrT will be Boolean congtants that are vaid nontype template
arguments. In turn, this allows the construction of more sophigticated and more powerful templatesthat specidize
their behavior on the properties of their type arguments.
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19.1 Deter mining Fundamental Types

To dart, let's devel op atemplate to determine whether atypeisafundamenta type. By default, we assume atypeis
not fundamental, and we specidize the template for the fundamental cases:

/'l types/typel. hpp

/[l primary tenplate: in general T is no fundamental type
tenpl ate <typenanme T>
cl ass | sFundaT {
public:
enumr{ Yes = 0, No = 1};
H

/1 macro to specialize for fundanmental types
#def i ne MK_FUNDA_TYPE(T)
templ at e<> cl ass | sFundaT<T> {
public:
enum{ Yes =1, No =0 },;

— — -

s
MK_FUNDA TYPE( voi d)

MK_FUNDA _TYPE( bool )

MK_FUNDA _TYPE( char)

MK_FUNDA TYPE(si gned char)
MK_FUNDA _TYPE(unsi gned char)
MK_FUNDA_TYPE(wchar _t)

MK_FUNDA TYPE( si gned short)
MK_FUNDA _TYPE(unsi gned short)
MK_FUNDA TYPE(si gned int)
MK_FUNDA _TYPE(unsi gned i nt)
MK_FUNDA _TYPE(si gned | ong)
MK_FUNDA _TYPE(unsi gned | ong)
#i f LONGLONG_EXI STS
MK_FUNDA TYPE(si gned | ong | ong)
MK_FUNDA_TYPE(unsi gned | ong | ong)
#endi f // LONGLONG EXI STS

MK_FUNDA _TYPE( f | oat)
MK_FUNDA_TYPE( doubl e)
MK_FUNDA _TYPE(| ong doubl e)

#undef MK_FUNDA_TYPE
The primary template definesthe genera case. That is, in generd, ISFundal<T >::Yeswill yield O (or fase):

tenpl ate <typename T>
cl ass | sFundaT {
public:
enum{ Yes = 0, No =1 };
H

For each fundamental type aspecidization is defined so that ISFundaT<T >::Yeswill yield 1 (or true). Thisis done by
defining amacro that expands the necessary code. For example,

MK_FUNDA_TYPE( bool )

expandsto thefollowing:

t anmnl at a<> |l ace | ceEiindaT<bnnl > [









19.2 Deter mining Compound Types

Compound types are types constructed from other types. Simple compound types include plain types, pointer types,
reference types, and even array types. They are constructed from a single base type. Class types and function types
are aso compound types, but their composition can involve multiple types (for parameters or members). Smple
compound types can be classified usng partid specidization. We start with ageneric definition of atraits class
describing compound types other than class types and enumeration types (the latter are treated separately):

/'l types/type2. hpp

t enpl at e<t ypenane T>
cl ass CompoundT { [l primary tenpl ate
public:
enum{ IsPtrT =0, IsRefT =0, IsArrayT = 0
I sFuncT = 0, IsPtrMenil = 0 };
typedef T BaseT;
typedef T Bott onT;
t ypedef ConmpoundT<voi d>  assT;

}

The member type BaseT isasynonym for the immediate type on which the template parameter type T builds.
BottomT, on the other hand, refersto the ultimate nonpointer, nonreference, and nonarray type on which T isbuilt.
For example, if T isint**, then BaseT would be int*, and BottomT would beint. For pointer-to-member types,
BaseT isthetype of the member, and ClassT isthe classto which the member belongs. For example, if T isa
pointer-to-member function of typeint(X::*)(), then BaseT isthe function typeint(), and ClassT isX. If T isnot a
poi nter-to-member type, the ClassT is CompoundT<void> (an arbitrary choice; you might prefer anonclass).

Partid specidizationsfor pointers and references arefairly straightforward:

/'l types/type3. hpp

t enpl at e<t ypenane T>
cl ass CompoundT<Té&> { /1 partial specialization for references
public:
enum{ IsPtrT =0, IsRefT =1, IsArrayT = 0
I sFuncT = 0, IsPtriMenil = 0 };
typedef T BaseT;
t ypedef typenane ConmpoundT<T>:: BottonT BottonT
t ypedef CompoundT<voi d> O assT;

}s

t enpl at e<t ypenane T>
cl ass ConmpoundT<T*> { /1 partial specialization for pointers
public:
enum{ IsPtrT =1, IsRefT =0, IsArrayT = 0
I sFuncT = 0, IsPtrMenil = 0 };
typedef T BaseT;
t ypedef typenane ConmpoundT<T>:: BottonT BottonT
t ypedef CompoundT<voi d> O assT;

}s

Arrays and pointers to members can be treated using the same technique, but it may come as a surprise that the
partid gpecidizationsinvolve more template parameters than the primary template:

/'l types/type4. hpp
#i ncl ude <stddef. h>

tenpl ate<typenane T, size t N>









19.3 Identifying Function Types

The problem with function typesisthat because of the arbitrary number of parameters, thereisn't afinite syntactic
construct using template parameters that describes them al. One approach to resolve this problem isto provide
partia specidizationsfor functionswith atemplate argument list that is shorter than achosen limit. Thefirst few such
partia gpecidizations can be defined asfollows:

/'l types/type5s. hpp

t enpl at e<t ypenane R>
cl ass CompoundT<R() > {
public:
enum{ IsPtrT =0, IsRefT = 0, IsArrayT = 0,
I sFuncT = 1, IsPtrMenil = 0 };
typedef R BaseT();
typedef R Bottonil();
t ypedef ConpoundT<voi d> d assT;

}s

tenpl at e<t ypenane R, typenane P1>
cl ass ConmpoundT<R(P1l) > {
public:
enum{ IsPtrT =0, IsRefT = 0, IsArrayT = O,
I sFuncT = 1, IsPtrMenil = 0 };
typedef R BaseT(Pl);
typedef R BottonT(P1);
t ypedef ConpoundT<voi d> d assT;

H

tenpl at e<t ypenane R, typenane P1>

cl ass ConpoundT<R(P1, ...)> {
public:

enum{ IsPtrT =0, IsRefT = 0, IsArrayT = 0,
I sFuncT = 1, IsPtrMenil = 0 };

typedef R BaseT(Pl);

typedef R BottonT(P1);

t ypedef ConpoundT<voi d> d assT;

}s

This approach has the advantage that we can create typedef members for each parameter type.

A more general technique uses the SFINAE (substitution-failure-is-not-an-error) principle of Section 8.3.1 on page
106: An overloaded function template can be followed by explicit template argumentsthat are invalid for some of the
templates. This can be combined with the approach used for the classification of enumeration types using overload
resolution. The key to exploit SFINAE isto find atype construct that isinvalid for function types but not for other
types, or vice versa. Because we are already able to recognize various type categories, we can aso exclude them
from consideration. Therefore, one congtruct that is useful isthe array type. Its elements cannot be void, references,
or functions. Thisingpiresthe following code:

t enpl at e<t ypenane T>
class | sFunctionT {
private:
typedef char One;
typedef struct { char a[2]; } Two;
tenpl at e<t ypenane U> static One test(...);
tenpl at e<t ypenane U> static Two test(U (*)[1]);
public:
enum { Yes = sizeof (I sFuncti onT<T>::test<T>(0)) == 1 },;
enum{ No = !Yes }:









19.4 Enumeration Classification with Overload Resolution

Overload resolution is the process that selects among various functions with a same name based on the types of their
arguments. As shown shortly, we can determine the outcome of a case of overload resolution without actualy
evauating afunction cal. Thisisuseful to test whether aparticular implicit conversion exists. Theimplicit conversion
that interests us particularly isthe conversion from an enumeration typeto anintegra type: It dlowsusto identify
enumeration types.

Explanations follow the complete implementation of thistechnique:

/'l types/type7. hpp
struct SizeOverOne { char c[2]; };

tenpl at e<t ypenane T,
bool convert_possible = ! ConpoundT<T>::|sFuncT &&
! CompoundT<T>:: | sArrayT>
cl ass ConsumeUDC {
public:
operator T() const;

}s

/'l conversion to function types is not possible
tenpl ate <typename T>
cl ass ConsumeUDC<T, fal se> {

};

/'l conversion to void type is not possible
tenpl at e <bool convert_possi bl e>
cl ass ConsumeUDC<voi d, convert _possi bl e> {

}s

char enum check(bool);

char enum check(char);

char enum check(signed char);
char enum check(unsi gned char);
char enum check(wchar _t);

char enum check(signed short);

char enum check(unsi gned short);

char enum check(signed int);

char enum check(unsi gned int);

char enum check(signed | ong);

char enum check(unsi gned | ong);

#i f LONGLONG_EXI STS
char enum check(signed | ong |ong);
char enum check(unsi gned | ong | ong);

#endif // LONGLONG EXI STS

/'l avoid accidental conversions fromfloat to int
char enum check(fl oat);

char enum check(doubl e);

char enum check(| ong doubl e);

Si zeOver One enum check(...); /1 catch al
t enpl at e<t ypenane T>
cl ass | sEnunil {
public:
enum { Yes = |sFundaT<T>::No &&
I CompoundT<T>: : | sRef T &&
I CompoundT<T>::IsPtrT &&
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19.5 Determining Class Types

With dl the classification templates described in the previous section, only class types (classes, structs, and unions)
remain to be recognized. One approach isto use the SFINAE principle as demonstrated in Section 15.2.2 on page
266.

Another approach isto proceed by dimination: If atypeisnot afundamenta type, not an enumeration type, and not
acompound type, it must be aclasstype. Thefollowing straightforward template implements thisidea:

/'l types/type8. hpp

t enpl at e<t ypenane T>
class IsC assT {
public:
enum { Yes = |IsFundaT<T>::No &&
| SEnumT<T>:: No &&
I ConpoundT<T>::IsPtrT &&
I ConpoundT<T>::1sRef T &&
I ConpoundT<T>: : I sArrayT &&
I ConpoundT<T>: : | sPtrMenT &&
I ConpoundT<T>:: | sFuncT };
enum{ No = !Yes };
}
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19.6 Putting It All Together

Now that we are able to classify any type according to itskind, it is convenient to group all the classfying templates
in asingle genera-purpose template. The following relatively small header file doesjudt that:

/'l types/typet. hpp

#i f ndef TYPET_HPP
#defi ne TYPET_HPP

/1 define |IsFundaT<>
#i ncl ude "typel. hpp"

/1 define primary tenplate ConmpoundT<> (first version)
/1 #i ncl ude "type2. hpp"

/1 define primary tenplate ConmpoundT<> (second version)
#i ncl ude "type6. hpp"

/1 define ConpoundT<> speci alizations
#i ncl ude "type3. hpp"
#i ncl ude "typed4. hpp"
#i ncl ude "type5. hpp"

/1 define |IsEnumli<>
#i ncl ude "type7. hpp"

/1 define |IsC assT<>
#i ncl ude "type8. hpp"

/1 define tenplate that handles all in one style
tenpl ate <typename T>
cl ass TypeT {

public:

enum { | sFundaT = |sFundaT<T>:: Yes,
IsPtrT = ConpoundT<T>::1sPtrT,
| sRef T = ConpoundT<T>::1sRefT,
IsArrayT = ConmpoundT<T>::IlsArrayT,
I sFuncT = ConmpoundT<T>::I|sFuncT,
I sPtrMeml = ConpoundT<T>::|sPtrMenfl,
I sSEnunmTl = | sEnunT<T>: : Yes,
IsClassT = IsC assT<T>::Yes };

H

#endi f // TYPET_HPP
The following program shows an gpplication of dl these classfication templates.

/'l types/types.cpp

#i ncl ude "typet. hpp"
#i ncl ude <i ostreane

class MyCd ass {
H

voi d myfunc()

{
}

enumE { el };

/1 check by passing type as tenpl ate argunent
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19.7 Afternotes

The ability for aprogram to inspect its own high-level properties (such asitstype structures) is sometimes called
reflection. Our framework therefore implements aform of compile-time reflection, which turns out to be a powerful
aly to metaprogramming (see Chapter 17).

Theideaof storing properties of types as members of template specidizations dates back to at least the mid-1990s.
Among the earlier serious gpplications of type classfication templateswasthe _type traitsutility inthe STL
implementation distributed by SGI (then known as Silicon Graphics). The SGI template was meant to represent some
properties of itstemplate argument (for example, whether it was a POD type or whether its destructor wastrivid).
Thisinformation was then used to optimize certain STL agorithmsfor the given type. An interesting festure of the

SGI solution was that some SGI compilersrecognized the  type traits specidizations and provided information
about the arguments that could not be derived using standard techniques. (The generic implementation of the

__type traitstemplate was safe to use, dbeit suboptimal.)

The use of the SFINAE principle for type classification purposes had been noted when the SFINAE principle was
clarified during the tandardization effort. However, it was never formally documented, and as aresult much effort
was later spent trying to recreate some of the techniques described in this chapter. One of the notable early
contributionswas by Andrel Alexandrescu who made popular the use of the sizeof operator to determinethe
outcome of overload resolution.

Findly, we should note that arather complete type classification template has been incorporated in the Boost library
(see[BoostTypeTraits]). Inturn, thisimplementation isthe basis of an effort to add such afacility to the sandard
library. See aso Section 13.10 on page 218 for ardated language extension.
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Chapter 20. Smart Pointers

Memory isaresource that isnormally explicitly managed in C++ programs. This management involvesthe acquisition
and disposa of blocks of raw memory.

One of the more ddlicate issuesin managing dynamically alocated memory isthe decison of when to dedllocateit.
Among the various tools to smplify this aspect of programming are so-called smart pointer templates. In C++, smart
pointers are classes that behave somewhat like ordinary pointers (in that they provide the dereferencing operators ->
and *) but in addition encapsul ate Some memory or resource management policy.

In this chapter we develop smart pointer templates that encapsul ate two different ownership models—exclusive and
shared:

Exclusive ownership can be enforced with little overhead, compared with handling raw pointers. Smart
pointersthat enforce such apolicy are useful to ded with exceptions thrown while manipulating dynamicaly
allocated objects.

Shared ownership can sometimes lead to excessvely complicated object lifetime Situations. In such cases, it
may be advisable to move the burden of the lifetime decisions from the programmer to the program.

Theterm smart pointer implies that objects are being pointed to. Alternatives for function pointers are subject to
different issues, some of which are discussed in Chapter 22.
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20.1 Holdersand Trules

This section introduces two smart pointer types. aholder type to hold an object exclusvely and aso-caled truleto
enable the transfer of ownership from one holder to another.

20.1.1 Protecting Against Exceptions

Exceptions were introduced in C++ to improve the reliability of C++ programs. They dlow regular and exceptiond
execution paths to be more cleanly separated. Y et shortly after exceptions were introduced, various C++
programming authors and columnists started observing that a naive use of exceptionsleadsto trouble, and particularly
to memory lesks. The following example shows but one of the many troublesome situations that could arise:

voi d do_sonet hi ng()

{
Sonet hi ng* ptr = new Sonet hi ng;
/1 perform sonme conputation with *ptr
ptr->perform);
delete ptr;
}

Thisfunction creates an object with new, performs some operations with this object, and destroys the object at the
end of the function with delete. Unfortunately, if something goeswrong after the crestion but before the deletion of
the object and an exception gets thrown, the object is not deall ocated and the program leaks memory. Other
problems may arise because the destructor is not caled (for example, buffers may not be written out to disk, network
connections may not be rel eased, on-screen windows may not be closed, and so forth). This particular case can be
handled fairly easily usng an explicit exception handler:

voi d do_sonet hi ng()

{
Sonet hi ng* ptr = 0;
try {
ptr = new Sonet hi ng;
/1 perform some conputation with *ptr
ptr->perforn();
catch (...) {
delete ptr;
throw, // rethrow the exception that was caught
}
return result;
}

Thisis manageable, but already we find that the exceptiond path is starting to dominate the regular path, and the
deletion of the object hasto be donein two different places: once in the regular path and once in the exceptiona
path. Thisavenue quickly growsworse. Consder what happensif we need to create two objectsin asingle function:

voi d do_two_t hi ngs()

{
Sonet hi ng* first = new Sonet hi ng;
first->perform));

Sonet hi ng* second = new Sonet hi ng;
second- >perform);









20.2 Reference Counting

The Holder template (and its Trule helper) works well to hold alocated structures temporarily so that they will be
dedllocated if an exception causes the local stack frame to be unwound. However, memory leaks can also occur in
other contexts, and in particular when many objects are interconnected in complex structures.

A generd rule about the management of dynamically alocated objectsiseasily stated: If nothing in an application
pointsto adynamically allocated object, that object should be destroyed and its storage should be made available for
reuse. It istherefore not surprising that programmers everywhere have been looking for ways to automate such a
policy. The chdlengeisto determine that nothing is pointing to an object.

Oneideathat has been implemented many times over is so-called reference counting: For each object that is pointed
to, keep acount of the number of pointersto it, and when that count dropsto zero, delete the object. For thisto be
feasble in C++, we need to adhere to some convention. Specificaly, becauseit isnot practical to track how ordinary
pointers to an object are created, copied, and destroyed, it is common to require that the only "pointers’ to a
reference-counted object are a specific kind of smart pointer. In this section we discuss the implementation of such a
reference-counting smart pointer. This pointer is atemplate whose main parameter isthe type of the object to which
it points

tenpl ate <typename T >
cl ass CountingPtr {
public:
/1 a constructor that starts a new count for the object
/] pointed to by T:
explicit CountingPtr (T*);

/1 copying increases the count:
CountingPtr (CountingPtr<T > const&)

/] destruction decreases the count:
inline ~CountingPtr();

/1 assignment decreases the count for the object previously
/1 pointed to and increases it for the new object pointed to
/1 (but beware of self-assignhment):

Counti ngPtr<T >& operator= (CountingPtr<T > const&)

/1 the operators that nake this a smart pointer
inline T& operator* ();
inline T* operator-> ();

};

The parameter T isthe only parameter that istruly needed to build afunctiona counting pointer template. Indeed, a
good case can be made in favor of keeping abasic template like this as smple and reliable as possible. Nonetheless,
we choose to use CountingPtr to demonstrate policy parameters (a.concept described in detail in Chapter 15).

The commentsin the code explain the generd gpproach to reference counting: Every construction, destruction, and
assgnment of a CountingPtr may potentialy change the reference counts (when one of the counts dropsto zero, the
object pointed to is del eted).

20.2.1 Wherelsthe Counter?
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20.3 Afternotes

Smart pointer templates are probably the second-most obvious application of templates after container templates,
however, the details are far from obvious, asthis chapter illustrates. Indeed, many authors cover the topic in some
detail. Good materid supplementing our discussion can befound in [ MeyersMoreEffective], which offersamore
basic discussion, and in [ AlexandrescuDesign], which describes acomplete, policy-based design of afamily of smart
pointers.

The C++ standard library contains a smart pointer template auto_pitr. It isintended for the same use as our
Holder/Trule pair of templates, but avoids the use of a second template by exploiting a controversia piece of the
C++ overloading rulesin the context of variableinitiaization. [5]

[5] An explanation of the mechanismsinvolved iswell beyond the scope of thistext (and not redly related to
templates). The controversy arises becauise one of the mechanisms on which auto_ptr reliesis considered by someto
be a defect in the C++ standard. See [ JosuttisAutoPtr] for additiond discussion on thistopic.

Other smart pointers were proposed for inclusion in the C++ standard library, but the C++ standardization
committee decided not to support them.

The Boost project offersalibrary containing avariety of smart pointer classesto meet avariety of needs (see |
BoostSmartPtr)).
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Chapter 21. Tuples

Throughout this book we often use homogeneous containers and array-like typesto illustrate the power of templates.
Such homogeneous structures extend the concept of a C/C++ array and are pervasive in most applications. C++
(and C) aso has anonhomogeneous containment facility: the class (or struct). Tuples are classtemplates that smilarly
alow usto aggregate objects of differing types. We start with the duo—an entity analogous to the standard std::pair
template—but we a so show how it can be nested to assemble an arbitrary number of members, thereby forming
trios, quartets, and so forth. [1]

[1] The number isnot entirely arbitrary because there exists an implementati on-dependent limit on the depth of
template nesting.
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21.1 Duos

A duo isthe assembly of two objectsinto asingletype. Thisissmilar to the std::pair classtemplate in the standard
library, but because we will add dightly different functiondity to thisvery basic utility, we opted for aname other than
pair to avoid confusion with the andard item. At its very smplest, we can define Duo asfollows:

tenpl ate <typenanme T1, typename T2>
struct Duo {
T1 vi; /1 value of first field
T2 vz, /1 value of second field

H
This can, for example, be useful asareturn type for afunction that may return aninvaid result:

Duo<bool , X> result = foo();
if (result.vl) {
/1 result is valid; value is in result.v2

}

Many other applications are possible.

The benefit of Duo as defined hereisnot inggnificant, but it israther small. After al, it would not be that much work
to define a structure with two fields, and doing so alows usto choose meaningful namesfor these fields. However,
we can extend the basic facility in afew waysto add to the convenience. First, we can add constructors:

tenpl ate <typenane T1, typename T2>
class Duo {

public:
T1 vi; // value of first field
T2 v2; /!l value of second field

/! constructors
Duo() : v1(), v2() {

}
Duo (Tl const& a, T2 const& b)

vli(a), v2(b) {
}
H

Note that we used aninitidizer list for the default constructor so that the members get zero initidized for built-in types
(see Section 5.5 on page 56).

To avoid the need for explicit type parameters, we can further add afunction so that the field types can be deduced:
tenpl ate <typenane T1, typename T2>

i nline

Duo<T1, T2> nake_duo (Tl const& a, T2 const& b)

{

}

return Duo<Tl, T2>(a, b);

Now the creation and initiaization of a Duo becomes more convenient. Instead of

Duo<bool ,int> resul t;
result.vl = true
result.v2 = 42
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21.2 Recursive Duos

Congder the following object definition:

Duo<i nt, Duo<char, Duo<bool, double> > > q4;

Thetype of g4 isaso-caled recursive duo. It isatype instantiated from the Duo template, and the second type
argument isitsalf aDuo aswell. We could aso use recursion of thefirst parameter, but in the remainder of this
discussion, recursve duo refers only to Duos with a second template argument that isinstantiated from the Duo
template.

21.2.1 Number of Fields

It'sreatively straightforward to count that g4 collects four vaues of typesint, char, bool, and double respectively. To
fecilitate the formal counting of the number of fields, we can further partidly specidize the Duo template:

/1 tupl es/duo2. hpp

tenpl ate <typenane A, typenane B, typename C
cl ass Duo<A, Duo<B, & > {

public:
typedef A T1; [/l type of first field
t ypedef Duo<B, & T2; /1 type of second field
enum{ N = Duo<B,C::N + 1 }; [/ nunber of fields
private:
T1 val uel; /1 value of first field
T2 val ue2; /1 value of second field
public:

/1 the other public nmenbers are unchanged
b

For completeness, let's provide a partial specidization of Duo o that it can degenerate into a nonhomogeneous
container holding just onefield:

/1 tupl es/ duo6. hpp

/1 partial specialization for Duo<> with only one field
tenpl ate <typenanme A>
struct Duo<A voi d> {
public:
typedef A T1; /1 type of first field
typedef void T2; // type of second field
enum{ N =1 }; /1l number of fields

private:
T1 val uel; /!l value of first field

public:
/1 constructors
Duo() : valuel() {
}
Duo (T1 const & a)
val uel(a) {

}

/'l field access
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21.3 Tuple Construction

The nested structure of recursive duosis convenient to gpply template metaprogramming techniques to them.
However, for ahuman programmer it is more pleasing to have aflat interface to this structure. To obtain this, we can
define arecursive Tuple template with many parameters and have it be a derivation from arecursive duo type of
appropriate Sze. We show the code here for tuples up to five fields, but it is not Sgnificantly harder to providefor a
dozen fields or s0. Y ou can find the code in tuples/tuplel.hpp.

To dlow for tuples of varying sizes, we have unused type parametersthat default to anull type, Null T, which we
define as a placeholder for that purpose. We use Null T rather than void because we will create parameters of that
type (void cannot be a parameter type):

/] type that represents unused type parameters
class Nul I T {

b
Tupleisdefined as atemplate that derives from a Duo having one more type parameter with Null T defined:

/1 Tuple<> in general derives from Tuple<> with one nore NullT
t enpl at e<t ypenane P1,

typenane P2 = Nul | T,
typenane P3 = Nul | T,
typenane P4 = Nul | T,
typenane P5 = Null T>

cl ass Tuple
publ i ¢ Duo<Pl, typenane Tupl e<P2, P3, P4, P5, Nul | T>: : BaseT> {
public:
typedef Duo<Pl1, typenane Tupl e<P2, P3, P4, P5, Nul | T>: : BaseT>
BaseT;

/] constructors:

Tuple() {}

Tupl e( TypeOp<P1>:: Ref Const T al
TypeOQp<P2>:: Ref Const T a2

TypeOp<P3>:: Ref Const T a3 = Nul | T(),
TypeOp<P4>:: Ref Const T a4 = Nul | T(),
TypeOp<P5>:: Ref Const T a5 = Nul I T())

BaseT(al, Tuple<P2, P3, P4, P5, Nul | T>(a2, a3, a4, a5)) {
H

Note the shifting pattern when passing the parameters to the recursive step. Because we derive from a base type that
defines member types T1 and T2, we used templ ate parameter names of the form Pn instead of the usua Tn. [2]

[2] A very curiouslookup rulein C++ prefers namesinherited from nondependent base classes over template
parameter names. This should not be aproblem in this case because the base class is dependent, but some compilers
ill get thiswrong a the time of thiswriting.

We need apartia specidization to end this recursion with the derivation from anonrecursive duo:

/'l specialization to end deriving recursion
tenpl ate <typenane Pl, typename P2>
class Tupl e<P1, P2, Nul I T, Nul | T, Nul I T> : public Duo<Pl1, P2> {
public:
t ypedef Duo<P1l, P2> BaseT,

Tuple() {}
Tupl e( TypeOp<P1>:: Ref Const T al
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21.4 Afternotes

Tuple congtruction is one of those template applications that appears to have been independently attempted by many
programmers. The details of these attempts vary widely, but many are based on the idea of arecursive pair structure
(such asour recursive duos). One interesting dternative was developed by Andrel Alexandrescuin |
AlexandrescuDesign]. He cleanly separatesthelist of typesfrom thelist of fiddsin thetuple. Thisleadsto the
concept of atypelist that has various gpplications of its own (one of which isthe congtruction of atuple with the

encapsul ated types).

Section 13.13 on page 222 discusses the concept of template list parameters, which are alanguage extension that
makes the implementation of tuplesamodt trivid.

Ru-Brd



Ru-Brd

Chapter 22. Function Objects and Callbacks

A function object (also caled afunctor) isany object that can be called using the function call syntax. Inthe C
programming language, three kinds of entities can lead to syntax that lookslike afunction cdl: functions, function-like
macros, and pointers to functions. Because functions and macros are not objects, thisimpliesthat only pointersto
functions are available asfunctorsin C. In C++, additiona possibilities are added: The function cal operator can be
overloaded for classtypes, aconcept of references to functions exists, and member functions and pointer-to-member
functionshave acadl syntax of their own. Not al of these concepts are equally useful, but the combination of the
concept of afunctor with the compile-time parameterization offered by templates|eads to powerful programming
techniques.

Besides developing functor types, this chapter aso delvesinto some usage idiomsfor functors. Nearly al usesend up
being aform of calback: The client of alibrary wantsthat library to cal back some function of the client code. The
classic exampleisasorting routine that needs afunction to compare two eementsin the set being sorted. The
comparison routine is passed as afunctor in this case. Traditiondly, the term calback has been reserved for functors
that are passed as function call arguments (as opposed to, for example, template arguments), and we maintain this
tradition.

The termsfunction object and functor are unfortunately alittle fuzzy in the sense that different members of the C++
programming community may give dightly different meaningsto theseterms. A common variation of the definition we
have given isto include only objects of classtypesin the functor or function object concept; function pointers are then
excluded. In addition, it is not uncommon to read or hear discussions referring to the classtype of afunction object
asa"function object." In other words, the phrase " class of function objects so and so " is shortened to “function
objects so and o ." Although we sometimes handle this terminology somewhat doppily in our own daily work, we
have madeit apoint to stick to our initid definitionsin this chapter.

Before digging into the use of templatesto implement useful functors, we discuss some properties of function cals
that motivate some of the advantages of template-based functors.

Ru-Brd =






22.1 Direct, Indirect, and Inline Calls

Typicaly, when aC or C++ compiler encounters the definition of anoninline function, it generates and stores
meachine code for that function in an object file. It aso creates a name associated with the machine code; in C, this
nameistypicaly the function nameitsdf, but in C++ the nameis usudly extended with an encoding of the parameter
typesto alow for unique names even when afunction is overloaded (the resulting nameis usualy called amangled
name, although the term decorated nameis also used). Smilarly, when the compiler encountersacal stelike

f();

it generates machine code for acall to afunction of that type. For most machine languages, the call ingtruction itsalf
necessitates the starting address of the routine. This address can be part of the instruction (in which case the
ingruction iscalled adirect cal), or it may reside somewherein memory or in amachine register (indirect cdl).
Almost al modern computer architectures provide both types of routine calling ingtructions, but (for reasonsthet are
beyond the scope of thisbook) direct calls are executed more efficiently than indirect cals. In fact, as computer
architectures get more sophisticated, it appears that the performance gap between direct callsand indirect calls
increases. Hence, compilers generdly attempt to generate adirect call instruction when possible.

In generd, acompiler does not know at which address afunction islocated (the function could, for example, bein
another trandation unit). However, if the compiler knows the name of the function, it generatesadirect cal ingtruction
with adummy address. In addition, it generates an entry in the generated object file directing the linker to update that
ingtruction to point to the address of afunction with the given name. Because the linker seesthe object files created
from dl the trandation units, it knowsthe cal stesaswell asthe definition stesand henceis ableto patch up al the
direct cdl stes. [1]

[1] Thelinker performsasimilar role for accesses to namespace scope variables, for example.

Unfortunately, when the name of the function is not available, anindirect call must be used. Thisisusually the casefor
cdlsthrough pointersto functions:

void foo (void (*pf)())
{

}

pf(); // indirect call through pointer to function pf

Inthisexampleitis, in generd, not possible for acompiler to know to which function the parameter pf points (after
al, itismog likely different for adifferent invocation of foo()). Hence, the technique of having the linker match names
does not work. The call destination is not known until the code is actually executed.

Although amodern computer can often execute adirect cal instruction about as quickly as other common
ingtructions (for example, an ingtruction to add two integers), function calls can still be a serious performance
impediment. Thefollowing example showsthis:

int f1(int const & r)

{
return ++(int&r; /1 not reasonable, but |ega
}
int f2(int const &r)
{
return r;

}









22.2 Pointers and Referencesto Functions

Congder thefollowing fairly trivid definition of afunction foo():

extern "C++" void foo() throw()

{
}

Thetype of thisfunction ought to be "function with C++ linkage that takes no arguments, returns no value, and does
not throw any exceptions.” For historical reasons, the forma definition of the C++ language does not actually make
the exception specification part of afunction type. [3] However, that may changein thefuture. It isagood ideato
make sure that when you creste code in which function types must match, the exception specifications also match.
Name linkage (usualy for "C" and "C++") is properly apart of the type system, but some C++ implementationsarea
littlelax in enforcing it. Specificaly, they alow apointer to afunction with C linkage to be assigned to a pointer to a
function with C++ linkage and vice versa. Thisis a conseguence of the fact that, on most platforms, calling
conventionsfor C and C++ functions are identical asfar asthe common subset of parameter and return typesis
concerned.

[3] Thehistorica origin of thisis not clear, and the C++ standard is somewhat inconsistent in this area.

In most contexts, the expression foo undergoes an implicit conversion to a pointer to the function foo(). Note that foo
itself does not denote the pointer, just as the expression ia after the declaration

int ia[10];

does not denote a pointer to the array (or to the first eement of the array). Theimplicit conversion from afunction (or
array) to apointer isoften caled decay. To illugtrate this, we can write the following complete C++ program:

/1 functors/funcptr.cpp

#i ncl ude <i ostreane
#i ncl ude <typei nfo>

voi d foo()

{
}

typedef void FooT(); // FooT is a function type,
/1l the sane type as that of function foo()

std::cout << "foo() called" << std::endl

int nmain()

{

foo(); /1 direct cal

/1 print types of foo and FooT

std::cout << "Types of foo: " << typeid(foo).nane()
< '\n'

std::cout << "Types of FooT: " << typei d(FooT). nane()
<< '\n';

FooT* pf = foo; [// inplicit conversion (decay)

pf(); /1 indirect call through pointer

(*pf)(); /1 equivalent to pf()

/1 print type of pf

std::cout << "Types of pf: " << typeid(pf).nane()
<< '\n';

FooT& rf = foo:r // noimolicit conversi on









22.3 Pointer-to-M ember Functions

To understand why a distinction is made between pointersto ordinary functions and pointers to member functions, it
isuseful to study the typical C++ implementation of acall to amember function. Such acal could take theform
p->mf() or aclose variation of this syntax. Here, p isapointer to an object or to asubobject. It is passed in some
form as ahidden parameter to mf(), whereit is known asthe this pointer.

The member function mf() may have been defined for the subobject pointed to by p, or it may be inherited by the
subobject. For example:

class Bl {
private:
int bil;
public:
void nfl();
H

void Bl::nf1()
{

}

std::cout << "bl="<<bl<<std::endl:

Asamember function, mf1() expectsto be caled for an object of type B1. Thus, thisrefersto to an object of type
B1.

Let's add some more codeto this:

class B2 {
private:
int b2;
public:
void nf2();
b

voi d Bl::nf2()
{

}

std::cout << "bh2="<<b2<<std::endl:

The member mf2() smilarly expects the hidden parameter thisto point to a B2 subobject.

Now let's derive aclass from both B1 and B2:

class Di public B1l, public B2 {
private:
int d;
H

With this declaration, an object of type D can behave as an object of type B1 or an object of type B2. For thisto
work, a D object contains both a B1 subobject and a B2 subobject. On nearly al 32-bit implementations we know
of today, a D object will be organized as shownin Figure 22.1. That is, if the Size of theint membersis4 bytes,
member bl has the address of this, member b2 has the address of this plus 4 bytes, and member d has the address
of this plus 8 bytes. Note how the B1 subobject sharesits origin with the origin of the D subobject, but the B2
subobject does not.









22.4 Class Type Functors

Although pointersto functions are functors directly available in thelanguage, there are many stuationsinwhichitis
advantageous to use a class type object with an overloaded function cal operator. Doing so can lead to added
flexibility, added performance, or both.

22.4.1 A First Example of Class Type Functors

Hereisavery smple example of aclasstype functor:

/1 functors/functorl. cpp
#i ncl ude <i ostreanp

/1l class for function objects that return constant val ue
cl ass Constant| nt Functor {
private:
i nt val ue; /1 value to return on ''function call’
public:
/1 constructor: initialize value to return
Constant I nt Functor (int c) : value(c) {

}

// '"'"function call’
int operator() () const {
return val ue;

}
};

/1 client function that uses the function object
void client (ConstantlntFunctor consté& cif)

{
std::cout << "calling back functor yields " << cif() << '\n'
}
int main()
{
Const ant I nt Funct or seven(7);
Constant | nt Functor fortytwo(42);
client(seven);
client(fortytwo);
}

CongtantI ntFunctor is a class type from which functors can be generated. That is, if you create an object with
Const ant | nt Functor seven(7); // create function object

the expression

seven(); /1 call operator () for function object

isacdl of operator () for the object seven rather than acdl of function seven(). We achieve the same effect
(indirectly) when passing the function objects seven and fortytwo through parameter cif to client().

Thisexampleillustrateswhat isin practice perhaps the most important advantage of class type functors over pointers
to functions: the ability to associate some state (data) with the function. Thisisafundamenta improvement in
capabilitiesfor calback mechanisms. We can have multiple "instances’ of afunction with behavior that is (in asense)









22.5 Specifying Functors

Our previous example of the standard set class shows only one way to handle the salection of functors. A number of
different approaches are discussed in this section.

22.5.1 Functors as Template Type Arguments

One way to pass afunctor isto make itstype atemplate argument. A type by itsaf isnot afunctor, however, so the
client function or class must create afunctor object with the given type. This, of course, ispossible only for classtype
functors, and it rules out function pointer types. A function pointer type does not by itself specify any behavior. Along
the same lines of thought, thisis not an appropriate mechanism to pass a class type functor that encapsulates some
state information (because no particular state is encapsulated by the type alone; a specific object of that typeis
needed).

Hereisan outline of afunction template that takes afunctor classtype as asorting criterion:

tenpl ate <typenane FO>
void ny_sort ( )

{

FO cnp; /1 create function object

if (cmp(x,y)) { [/ use function object to conpare two val ues

}
}

[/ call function with functor
my_sort<std:.:less< > > ( );

With this approach, the selection of the comparison code has become a compile-time affair. And because the
comparison can be "inlined,”" agood optimizing compiler should be able to produce code that is essentiadly equivaent
to replacing the functor cals by direct gpplications of the resulting operations. To be entirdly perfect, an optimizer
must aso be able to ide the storage used by the cmp functor object. In practice, however, only afew compilersare
capable of such features.

22.5.2 Functors as Function Call Arguments

Ancther way to pass functorsisto pass them as function call arguments. Thisalowsthe caler to construct the
function object (possibly using anontrivia congructor) a runtime.

The efficiency argument is essentially smilar to that of having just afunctor type parameter, except that we must now
copy afunctor object asit is passed into the routine. This cost isusudly low and can in fact be reduced to zero if the
functor object has no data members (which is often the case). Indeed, consider thisvariation of our my_sort example:

tenpl ate <typename F>
void ny_sort ( , F cnp)

{

if (cnp(x,y)) { [/ use function object to conpare two val ues

}









22.6 Introspection

In the context of programming, the term introspection refersto the ability of aprogram to ingpect itsdlf. For example,
in Chapter 15 we designed templates that can inspect atype and determine what kind of typeit is. For functors, itis
often useful to be ableto tell, for example, how many arguments the functor accepts, the return type of the functor, or
the nth parameter type of the functor type.

Introspection is not easly achieved for an arbitrary functor. For example, how would we write atype function that
evauatesto the type of the second parameter in afunctor like the following?

cl ass Super Func {
public:
void operator() (int, char**);

}s

Some C++ compilers provide a specia type function known as typeof. It evauates to the type of its argument
expression (but doesn't actudly evauate the expression, much like the sizeof operator). With such an operator, the
previous problem can be solved to alarge extent, abeit not easily. The typeof concept isdiscussed in Section 13.8
on page 215.

Alternatively, we can develop afunctor framework that requires participating functorsto provide some extra
information to enable somelevel of introgpection. Thisisthe gpproach we use in the remainder of this chapter.

22.6.1 Analyzing a Functor Type

In our framework, we handle only classtype functors [ 7] and require them to provide the following information:

[7] To reduce the strength of this congtraint, we aso develop atool to encapsulate function pointersin the framework.

The number of parameters of the functor (as a member enumerator constant NumParams)

The type of each parameter (through member typedefs Param1T, Param2T, Param3T,...)

The return type of the functor (through amember typedef ReturnT)

For example, we could rewrite our PersonSortCriterion asfollowsto fit this framework:

class PersonSortCriterion {
public:
enum { NurmParans = 2 };
typedef bool ReturnT;
t ypedef Person const & ParamlT,;
t ypedef Person const & Paran?T,;

bool operator() (Person consté& pl, Person const& p2) const {
!l retiirne whether n1 i ¢ '"'"| ace than'' n?









22.7 Function Object Composition

Let'sassume we have the following two smple mathematica functorsin our framework:

/1 functors/ mathl. hpp

#i ncl ude <cmat h>
#i ncl ude <cstdli b>

class Abs {
public:
/1 "'"function call'"':
doubl e operator() (double v) const {
return std::abs(v);
}

}s

class Sine {
public:
/1 "'"function call'"':
doubl e operator() (double a) const {
return std::sin(a);
}

}s

However, the functor we redlly want isthe one that computes the absol ute value of the sine of agiven angle. Writing
the new functor isnot hard:

cl ass AbsSi ne {
public:
doubl e operator() (double a) {
return std::abs(std::sin(a));
}
};

Neverthdess, it isinconvenient to write new declarations for every new combination of functors. Instead, we may
prefer to write afunctor utility that composes two other functors. In this section we develop some templates that
enable usto do this. Along the way, we introduce various concepts that prove useful in the remainder of this chapter.

22.7.1 Simple Composition

Let'sstart with afirst cut at an implementation of acomposition tool:

/1 functors/conposel. hpp

tenpl ate <typenane FOL, typenanme FO2>
cl ass Conposer {
private:
FOL fol;, // first/inner function object to cal
FO2 fo2; // second/outer function object to cal
public:
/1 constructor: initialize function objects
Conposer (FOL f1, FQ2 f2)
fol(fl), fo2(f2) {
}

/1 "'"function call'': nested call of function objects
doubl e operator() (double v) {

return fo2(fol(v));
1









22.8 Value Binders

Often, afunctor with multiple parameters remains useful when one of the parametersis bound to a specific vaue. For
example, asmple Min functor template such as

/1 functors/mn. hpp

tenpl ate <typenanme T>
class Mn {
public:
typedef T ReturnT;
typedef T ParamlT;
typedef T Paran®T,;
enum { NunmParanms = 2 };
ReturnT operator() (ParanmlT a, Paran2T b) {
return a<b ? b : a;

}

H

can be used to build anew Clamp functor that behaveslike Min with one of its parameters bound to acertain
congtant. The constant could be specified as atemplate argument or as a run-time argument. For example, we can
write the new functor asfollows:

/1 functors/clanp. hpp

tenpl ate <typenanme T, T nmax_result>
class Clanp : private M n<T> {
public:
typedef T ReturnT;
typedef T ParamlT;
enum { NurmParans = 1 };
ReturnT operator() (ParanlT a) {
return M n<T>;:operator() (a, max_result);
}

};

Aswith composition, it is very convenient to have some template that automates the task of binding afunctor
parameter available, even though it doesn't take very much code to do so manudly.

22.8.1 Selecting the Binding

A binder binds a particular parameter of a particular functor to a particular value. Each of these aspects can be
selected at run time (using function call arguments) or at compile time (using template arguments).

For example, the following template selects everything staticdly (that is, a compiletime):

tenpl ate<typenane F, int P, int V>
class BindintStatically;
/1 Fis the functor type
/!l Pis the paranmeter to bind
/1 Vis the value to be bound

Each of the three binding aspects (functor, bound parameter, and bound vaue) can instead be selected dynamically
with various degrees of convenience.

Parhan< the leas convvenient i< to malkke the < ection of which naramater to bind dvnamic Preg imably thicwor ild









Functor Operations: A Complete | mplementation

Toillusrate the overall effect achieved by our sophisticated trestment of functor composition and vaue binding, we
provide here a complete implementation of these operations for functors with up to three parameters. (It is
sraightforward to extend this to a dozen parameters or so, but we prefer to keep the printed code relatively concise.)

Let'sfirst look at some sample client code:

/1 functors/functorops. cpp

#i ncl ude <i ostreanp

#i ncl ude <string>

#i ncl ude <typei nfo>

#i ncl ude "funct or ops. hpp"

bool conpare (std::string debugstr, double v1, float v2)

i f (debugstr !'="") {
std::cout << debugstr << ": " << vl
<< (vi<v2? "< '3
<< v2 << '\n'
}
return vi<vz;
}
voi d print_name_val ue (std::string nanme, double val ue)
{
std::cout << name << ": " << value << '\n'
}
doubl e sub (doubl e a, double b)
{
return a-b;
}
doubl e twi ce (double a)
{
return 2*a;
}
int nmain()
{

usi ng std::cout;

/1 denonstrate conposition:

cout << "Conposition result: "
<< conmpose(func_ptr(sub), func_ptr(twice))(3.0, 7.0)
<< '\n';

/] denonstrate binding:
cout << "Binding result:
<< bi ndf p<1>(conpare, "main()->conpare()")(1.02, 1.03)
< '\n'
cout << "Binding output: ";
bi ndf p<1>(pri nt_nane_val ue,
"the ultimate answer to life")(42);

/1 conbi ne conposition and bi ndi ng:
cout << "M xi ng conposition and bi ndi ng (bi nd<l1>):
<< bi nd<1>(conpose(func_ptr(sub),func_ptr(tw ce)),
7.0)(3.0)
< '\n'
cout << "M xi na comhosition and bi ndi na (bi nd<2>)
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22.10 Afternotes

The STL part of the C++ standard library uses the concept of functors. For example, al algorithms use functorsto
customize their exact behavior. Many of these functors are so-called predicates. Predicates are functions or function
objects that return aBoolean vaue (avaue that is convertible to booal). The predicates, in genera, should be pure
functors; otherwise, unexpected results may occur (see Section 8.1.4 of [ JosuttisSidLib]).

The C++ standard library aso provides severa standard functors and adapters for composition. In fact, for every
common unary and binary operator afunction object is provided. See Sections 8.2 and 8.3 of [ JosuttisStdL ib] for
details. However, note that the C++ standard library does not provide enough adapters to support every functional
behavior as acombination of function objects. For example, it is not possible to combine the results of two unary
operationsto formulate a criterion such as "thisand that." The Boost repository of C++ libraries provides
supplementary adaptersthat fill this gap (see [ BoostCompose]).
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Appendix A. The One-Definition Rule

Affectionately known asthe ODR, the one-definition rule is a cornerstone for the well-formed structuring of C++
programs. The most common consegquences of the ODR are Ssmple enough to remember and gpply: Define noninline
functions exactly once across dl files, and define classes and inline functions at most once per trandation unit, making
asurethat dl definitionsfor the same entity areidentical.

However, the devil isin the details, and when combined with template instantiation, these details can be daunting.
This appendix is meant to provide acomprehensive overview of the ODR for the interested reader. We dso indicate
when specific related issues are expounded on in the main text.

Ru-Brd o=




Ru-Brd

A.l1 Trandation Units

In practice we write C++ programs by filling fileswith "code." However, the boundary set by afileisnot terribly
important in the context of the ODR. Instead, what matters are so-called trandation units. Essentidly, atrandation
unit isthe result of applying the preprocessor to afile you feed to your compiler. The preprocessor drops sections of
code not selected by conditiona compilation directives (#f, #ifdef, and friends), drops comments, inserts#included
files (recursively), and expands macros.

Hence, asfar asthe ODR is concerned, having the following two files

/'l File header. hpp:

#i f def DO_DEBUG

#def i ne debug(x) std::cout << x << '\n
#el se

#defi ne debug(x)

#endi f

voi d debug init();

/1 File myprog. cpp:
#i ncl ude "header. hpp"

int main()
{
debug_init();
debug("main()");
}

isequivdent to thefollowing anglefile

/1 File myprog. cpp:
voi d debug init();

int nmain()

{
}

debug _init();

Connections across trandation unit boundaries are established by having corresponding declarations with externd
linkage in two trandation units (for example, two declarations of the globa function debug_init()) or by
argument-dependent lookup during the instantation of exported templates.

Note that the concept of atrandation unit isalittle more abstract than just "a preprocessed file" For example, if we
wereto feed a preprocessed file twice to acompiler to form asingle program, it would bring into the program two
digtinct trandation units (thereis no point in doing so, however).
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A.2 Declar ations and Definitions

The terms declaration and definition are often used interchangeably in common "programmer talk.” In the context of
the ODR, however, the exact meaning of these wordsisimportant. [1]

[1] We dso think it'sagood habit to handle the terms carefully when exchanging ideas about C or C++. We do so
throughout this book.

A declaration isa C++ construct that introduces or reintroduces anamein your program. A declaration can dso bea
definition, depending on which entity it introduces and how it introducesit:

Namespaces and namespace aliases: The declarations of namespaces and their diases are dways aso
definitions, athough the term definition isunusud in this context because the list of members of anamespace
can be "extended" at alater time (unlike classes and enumeration typesfor example).

Classes, classtemplates, functions, function templates, member functions, and member function
templates. Thedeclarationisadefinition if and only if the declaration includes a brace-enclosed body
associated with the name. Thisrule includes unions, operators, member operators, static member functions,
congtructors and destructors, and explicit speciaizations of template versons of such things (that is, any
classlike and function-like entity).

Enumerations. The declarationisadefinition if and only if it includes the brace-enclosed list of enumerators.

L ocal variablesand nongtatic data members. These entities can dways be trested as definitions,
athough the digtinction rarely maiters.

Global variables: If the declaration isnot directly preceded by akeyword extern or if it hasan initidizer, the
declaration of aglobd variableisaso adefinition of that variable. Otherwise, it isnot a definition.

Static data members. The declaration isadefinitionif and only if it ppears outsde the class or class
template of which it isamember.

Typedefs, using-declar ations, and using-dir ectives. These are never definitions, athough typedefs can
be combined with class or union definitions.

Explicit insantiation directives; We can consider them to be definitions.









A.3 The One-Definition Rulein Detall

Asweimplied in theintroduction to this appendix, there are many detailsto the actual rule. We organize therule's
congraints by their scope.

A.3.1 One-per-Program Constraints

There can be a most one definition of the following items per program:

Noninline functions and noninline member functions

Variableswith externa linkage (essentialy, variables declared in a namespace scope or in the globa scope,
and with the static specifier)

Static datamembers

Noninline function templates, noninline member function templates, and noninline members of classtemplates
when they are declared with export

Static datamembers of class templates when they are declared with export:

For example, a C++ program congsting of the following two trandation unitsisinvaid [2]:

[2] Interestingly, itisvalid C because C has aconcept of tentative definition, which isavariable definition without an
initializer and can gppear more than once in a program.

[/ Translation unit 1:
int counter;

/1 Translation unit 2:
i nt counter; /1 ERROR defined twi ce! (ODR violation)

Thisrule does not gpply to entitieswith internd linkage (essentidly, entities declared in an unnamed namespace scope
or in the globa scope using the static specifier) because even when two such entities have the same name, they are
consdered digtinct. In the same vein, entities declared in unnamed namespaces are considered distinct if they appear
in digtinct trandation units. For example, the following two trandation units can be combined into avalid C++

program:

[/ Translation unit 1:
static counter = 2; // unrelated to other translation units

nanespace {
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Appendix B. Overload Resolution

Overload resolution isthe process that selects the function to cdl for agiven cal expression. Consider the following
ampleexample

voi d display_nun(int); 1 (1)
voi d display_nun(double); [/ (2)
int nmain()
{
di spl ay_nun{399); /1 matches (1) better than (2)
di spl ay_nun{( 3. 99); /1 matches (2) better than (1)
}

In this example, the function name display_num() is said to be overloaded. When thisnameisused inacall, aC++
compiler must therefore distingui sh between the various candidates using additiond information; mostly, this
information isthe types of the call arguments. In our example it makesintuitive senseto cdl theint verson when the
function is caled with an integer argument and the double version when afloating-point argument is provided. The
forma processthat attemptsto modd thisintuitive choice is the overload resolution process.

The generd ideas behind the rules that guide overload resolution are s mple enough, but the details have become
quite complex during the C++ standardization process. This complexity was driven mostly by the desire to support
various real-world examples that intuitively (to ahuman) seem to have an "obvioudy best match,” but when trying to
formaizethisintuition, various subtleties arose.

In this gppendix we provide areasonably detailed survey of the overload resolution rules. However, the complexity
of this processis such that we do not claim to cover every part of thetopic.
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B.1 When Does Overload Resolution Kick In?

Overload resolution is just one part of the complete processing of afunction cdl. Infact, it isnot part of every
function call. Firgt, calsthrough function pointers and calls through pointers to member functions are not subject to
overload resolution because the function to cal isentirely determined (at run time) by the pointers. Second,
function-like macros cannot be overloaded and are therefore not subject to overload resolution.

Atavery highlevd, acdl to anamed function can be processed in the following way:

The nameislooked up to form aniinitial overload t.

If necessary, this set istweaked in various ways (for example, template deduction occurs).

Any candidate that doesn't match the call a al (even after considering implicit conversions and default
arguments) isdiminated from the overload set. Thisresultsin aset of so-caled viable function candidates.

Overload resolution is performed to find abest candidate. If thereisone, it is selected; otherwise, thecall is
ambiguous.

The sdlected candidate is checked. For example, if it isan inaccessble private member, adiagnostic isissued.

Each of these steps has its own subtleties, but overload resolution is arguably the most complex. Fortunately, afew
smple principles clarify the mgority of Stuations. We examine these principles next.
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B.2 Smplified Overload Resolution

Overload resolution ranks the viable candidate functions by comparing how each argument of the call matchesthe
corresponding parameter of the candidates. For one candidate to be considered better than another, the better
candidate cannot have any of its parameters be aworse match than the corresponding parameter in the other
candidate. Thefollowing exampleillugratesthis:

voi d conbi ne(int, double);
voi d conbi ne(l ong, int);

int main()

{
}

conbine (1, 2); [/ anbiguous!

Inthisexample, the call to combine() isambiguous because the first candidate matches the first argument (thelitera 1
of typeint) best, whereas the second candidate matches the second argument best. We could arguethat intisin
some sense closer to long than to double (which supports choosing the second candidate), but C++ does not attempt
to define ameasure of closenessthat involves multiple cal arguments.

Giventhisfirg principle, we are left with specifying how well agiven argument matches the corresponding parameter
of aviable candidate. Asafirst approximation we can rank the possible matches as follows (from best to worst):

Perfect match. The parameter has the type of the expression, or it has atype that is areference to the type of
the expresson (possibly with added const and/or volatile qudifiers).

Match with minor adjustments. Thisincludes, for example, the decay of an array variable to apointer toits
first dement, or the addition of const to match an argument of typeint** to a parameter of type int const*
congst*.

Match with promotion. Promotion isakind of implicit conversion that includes the converson of small
integra types (such asbool, char, short, and sometimes enumerations) to int, unsigned int, long or unsgned
long, and the conversion of float to double.

Match with standard conversions only. Thisincludes any sort of standard conversion (such asint to float) but
excludestheimplicit cal to a conversion operator or a converting constructor.

Match with user-defined conversons. Thisalowsany kind of implicit conversion.

Match with elipss. An dlipss parameter can match amost any type (but non-POD classtypesresultin
undefined behavior).









B.3 Overloading Details

The previous section covers most of the overloading situations encountered in everyday C++ programming. There
are, unfortunately, many more rules and exceptions to these rules—more than is reasonabl e to present in abook that
isnot really about function overloading in C++. Nonethel ess, we discuss some of them here in part because they
apply somewhat more often than other rules and in part to provide a sense for how deep the details go.

B.3.1 Prefer Nontemplates

When dl other aspects of overload resolution are equa, a nontemplate function is preferred over an instance of a
template (it doesn't matter whether that instance is generated from the generic template definition or whether it is
provided as an explicit specidization). For example:

tenpl at e<typename T> int f(T); /11 (1)
void f(int); 11 (2)

int main()

{
}

return f(7); // ERROR selects (2), which doesn't return a val ue

Thisexample dso clearly illustrates that overload resolution normally does not involve the return type of the selected
function.

If the choice is between two templates, then the most specidized of the templatesis preferred (provided oneis
actually more specialized than the other). See Section 12.2.2 on page 186 for athorough explanation of this concept.

B.3.2 Conversion Sequences

Animplicit converson can, in genera, be a sequence of dementary conversions. Consider the following code
examnple

cl ass Base {
public:
operator short() const;

}

class Derived : public Base {

H
voi d count (int);

voi d process(Derived const& object)

{
}

count (obj ect); /1 matches with user-defined conversion

The call count(object) works because object can implicitly be converted to int. However, this conversion requires
severd seps

1.

A conversion of object from Derived const to Base const
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This gppendix lists the resources that were mentioned, adopted, or cited in this book. These days many of the
advancements in programming happen in dectronic forums. It istherefore not surprising to find, in addition to the
more traditiona books and articles, quite afew Web sites. We certainly do not claim that our list is closeto being
comprehensive. However, we do find that they are relevant contributions to the topic of C++ templates.

Web stesaretypicdly consderably more volatile than books and articles. The Internet links listed here may not be
vaid inthe future. Therefore, we provide the actud list of linksfor thisbook at the following site (and we expect this
steto be stable):

http://mww.josuttis.com/tmplbook

Before ligting the books, articles, and Web sites, we introduce the more interactive kind of resourcesthat are
provided by so-called newsgroups.
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Newsgroups

Usenet isalarge and diverse collection of electronic forums often called newsgroups. Some of these newsgroups are
moderated, which meansthat every submission isexamined in some way for its gppropriateness.

A few Usenet groups are dedicated to the discussion of the C++ language. In fact, many of the most advanced
techniques presented in this book were first published in some of these groups. In some cases, techniques were
developed through collaborative discussion in these groups.

The following Usenet newsgroups discuss C++, the standard, and the C++ standard library:

Tutorid level C++ (unmoderated)
alt.conp.lang. | earn.c-c++

Genera aspects of C++ (unmoderated)
conp. | ang. c++

Genera aspects of C++ (moderated)
conp. | ang. c++. noder at ed

Aspects of the C++ standard (moderated)
conp. std. c++

If you don't have access to a Usenet newsgroups server, you can use the Google Usenet archive:

http://groups.google.com
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Glossary

Thisglossary isacompilation of the most important technica termsthat aretopic in thisbook. See|
StroustrupGlossary] for avery complete, generd glossary of terms used by C++ programmers.
abstract class

A classfor which the creation of concrete objects (instances) isimpossible. Abstract classes can be used to collect
common properties of different classesin asingletype or to define a polymorphic interface. Because abstract classes
are used as base classes, the acronym ABC is sometimes used for abstract base class.

ADL

An acronym for argument-dependent lookup. ADL is a processthat looks for aname of afunction (or operator) in
namespaces and classes that are in some way associated with the arguments of the function cal in which that function
(or operator name) appears. For historical reasons, it is sometimes called extended Koenig lookup or just Koenig
lookup (the latter isaso used for ADL applied to operators only).

angle bracket hack

A nongtandard feature that allows a compiler to accept two consecutive > characters as two closing angle brackets
(even though they normally require intervening whitespace). For example, the expression vector<list<int>> is not
vaid C++ but istreated identically to vector<list<int> > by the angle bracket hack.

angle brackets

The characters < and > when they are used to delimit alist of template arguments or template parameters.

ANSI

An acronym for American National Standard Ingtitute. A private, nonprofit organization that coordinates efforts to
produce standard specifications of al kinds. A subcommittee caled J16 isadriving force behind the standardization
of C++. It cooperates closely with theinternationa standards organization (1SO).

argument

A vaue (in abroad sense) that subgtitutes a parameter of a programmatic entity. For example, in afunction cdl
abg(-3) the argument is-3. In some programming communities arguments are called actua parameters (whereas
parameters are called forma parameters).

argument-dependent lookup See [ADL] class

The description of acategory of objects. The class defines aset of characteristicsfor any object. Theseincludeits
data (attributes, data members) as well as its operations (methods, member functions). In C++, classes are structures
with membersthat can a so be functions and are subject to access limitations. They are declared using the keywords
classor struct.
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