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Preface

Digital audio signal processing is employed in recording and storing music and
speech signals, for sound mixing and production of digital programs, in digital
transmission to broadcast receivers as well as in consumer products like CDs,
DATs and PCs. In the latter case, the audio signal is in a digital form all the way
from the microphone right up to the loudspeakers, enabling real-time processing
with fast digital signal processors.

This book provides the basis of an advanced course in Digital Audio Signal Pro-
cessing which I have been giving since 1992 at the Technical University Hamburg-
Harburg. It is directed at students studying engineering, computer science and
physics but, also for professionals who look for solutions to problems in audio si-
gnal processing like in the fields of studio engineering, consumer electronics and
multimedia. The mathematical and theoretical fundamentals of digital audio signal
processing systems will be presented and typical applications with an emphasis on
realization aspects will be discussed. Prior knowledge of systems theory, digital
signal processing and multirate signal processing are taken as a prerequisite.

The book is divided into two parts. The first part (chapters 1-4) presents a ba-
sis for hardware systems used in digital audio signal processing. The second part
(chapters 5-9) discusses algorithms for processing digital audio signals. Chapter
1 describes the course taken by an audio signal from its recording in a studio up
to its reproduction at home. Chapter 2 contains a representation of signal quan-
tization, dither techniques and spectral shaping of quantization errors used for
reducing the nonlinear effects of quantization. In the end, a comparison is made
between the fixed-point and floating-point number representations as well as their
associated effects on format conversion and algorithms. Chapter 3 describes me-
thods for AD/DA conversion of signals, starting with Nyquist sampling, methods
for oversampling techniques and delta-sigma modulation. The chapter closes with
a presentation of some circuit design of AD/DA converters. After an introduction
to digital signal processors and digital audio interfaces, chapter 4 describes simple
hardware systems based on a single- and multiprocessor solutions. The algorithms
introduced in the following chapters 5-9 are, to a great extent, implemented in
real-time on hardware platforms presented in chapter 4. Chapter 5 describes di-
gital audio equalizers. Apart from the implementation aspects of recursive audio
filters, nonrecursive linear phase filters based on fast convolution and filter banks
are introduced. Filter designs, parametric filter structures and precautions for re-
ducing quantization errors in recursive filters are dealt with in detail. Chapter
6 deals with room simulation. Methods for simulation of artificial room impulse
response and methods for approximation of measured impulse responses are dis-
cussed. In chapter 7 the dynamic range control of audio signals is described. These

IX
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methods are applied at several positions in the audio chain from the microphone up
to the loudspeakers in order to adapt to the dynamics of the recording, transmis-
sion and listening environment. Chapter 8 contains a presentation of methods for
synchronous and asynchronous sampling rate conversion. Efficient algorithms are
described which are suitable for real-time processing as well as off-line processing.
Both lossless and lossy data compression of digital audio signals are discussed in
chapter 9. Lossless data compression is applied for storing of higher word-lengths.
Lossy data compression, on the other hand, plays a significant role in communi-
cation systems.

I would like to thank Prof. Fliege (University of Mannheim), Prof. Kammeyer
(University of Bremen) and Prof. Heute (University of Kiel) for comments and
support. I am also grateful to my colleagues at the TUHH and especially Dr.
Alfred Mertins, Dr. Thomas Boltze, Dr. Bernd Redmer, Dr. Martin Schénle, Dr.
Manfred Schusdziarra, Dr. Tanja Karp, Georg Dickmann, Werner Eckel, Thomas
Scholz, Riidiger Wolf, Jens Wohlers, Horst Zolzer, Barbel Erdmann, Ursula Seifert
and Dieter Godecke. Apart from these, I would also like to say a word of gratitude
to all those students who helped me in carrying out this work successfully.

Special thanks go to Saeed Khawaja for his help during translation and to Dr.
Anthony Macgrath for proof-reading the text. I also would like to thank Jenny
Smith, Colin McKerracher, Ian Stoneham and Christian Rauscher (Wiley).

My special thanks are directed to my wife Elke and my daughter Franziska.

Hamburg, July 1997 Udo Zdlzer




Chapter 1

Introduction

In this introductory chapter, the fields of application for digital audio signal pro-
cessing are presented. Starting from recording in a studio or in a concert hall, the
whole chain of signal processing is shown, up to the reproduction at home or in a
car. The fields of application can be divided into the following areas:

studio technology

digital transmission systems

storage media

¢ audio components for home entertainment,

The basic principles of the above-mentioned fields of application will be presented
as an overview in order to exhibit the uses of digital signal processing.

1.1 Studio Technology

While recording speech or music in a studio or in a concert hall, the analog signal
from a microphone is first digitized, fed to a digital mixing console and then stored
on a digital storage medium. A digital sound studio is shown in Fig. 1.1. Besides
the analog sources (microphones), digital sources are fed to the digital mixing
console over multichannel MADI interfaces [AES91]. Digital storage media like the
digital multitrack tape machines and digital hard disc recording systems are also
connected via multichannel MADI interfaces to the mixing console. The final stereo

1
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Figure 1.1 Digital sound studio.

mix is stored via a two-channel AES/EBU interface [AES92] on a two-channel
MASTER machine. External appliances for effects or room simulators are also
connected to the mixing console via a two-channel AES/EBU interface. All systems
are synchronized by a MASTER clock reference. In digital audio technology, the
sampling rates! fs = 48 kHz for professional studio technology, fs = 44.1 kHz for
compact disc and fs = 32 kHz for broadcasting applications are established. The
sound mixing console plays a central role in a digital sound studio. Fig. 1.2 shows
the functional units. The N input signals are processed individually. After level and
panorama control, all signals are summed up to give a stereo mix. The summation
is carried out several times so that other auxiliary stereo and/or mono signals are
available for other purposes. In a sound channel (see Fig. 1.3), an equalizer unit
(EQ), a dynamic unit (DYN), a delay unit (DEL), a gain element (GAIN) and a
panorama element (PAN) are used. In addition to input and output signals in an
audio channel, inserts as well as auxiliary or direct outputs are required.

ldata rate: 16 bit x 48 kHz = 768 kbit /s
data rate (AES/EBU signal): 2 x (24+8) bit x 48 kHz = 3.072 Mbit/s
data rate (MADI signal): 56 x (24+8) bit x 48 kHz = 86.016 Mbit/s
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Digital EQ DYN DEL GAIN PAN
(nput n I 1 l l R

Insert Insert Output Output

Figure 1.3 Sound channel.

1.2 Digital Transmission Systems

For radio broadcasting, there are no digital transmission techniques to complement
the analog techniques (LF, MF, HF and VHF) covering wide broadcasting areas.
Initial solutions are introduced with Digital Satellite Broadcasting (Digital Satel-
lite Radio). A long-term replacement of stationary and mobile receiving of FM
signals is planned from 1995 onwards with a digital technique called DAB (Digital
Audio Broadcasting, Terrestrial + Satellite). A list of broadcasting systems is
given in Table 1.1 [Ple91].

Digital Satellite Broadcasting

Digital Satellite Broadcasting operates at a sampling rate of fs = 32 kHz. Digital
sound signals of an AES/EBU interface are reduced (see Fig. 1.4, [Ple85]) by a
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Table 1.1 Comparison of different broadcasting systems (n = number of programs, B
= audio bandwidth, SNR = signal-to-noise ratio, M = mono, S = stereo, S+ = stereo +
additional information, m = mobile, s = stationary).

frequency receiving parameters

range area n B [kHz] | SNR [dB] M+S 8;m

LF 2:;%‘;‘”;?: a:“d 3-5 <45 20 M s+m

MF L‘:Z;%’;W;f:asa“d 8 <45 20 M s+m

HF worldwide ? <4.5 0 M s(m)

VHF regional and 5-10 15 50 S s+m
local

DSR nationwide and 16 15 70 S 5
nearby areas

DAB-T regional and >4 > 15 70 S+ s+m
local +12

DAB-T+§ | Nat- + pearby ? > 15 70 S+ s+m
reg., local

coder (DCA) to a data rate of 1.024 Mbit/s (DS1 interface?). The data reduction
is carried out by means of a floating-point representation with a 14 bit mantissa
and a scaling factor for a block of 64 samples. The transmission to a ground station
takes place through a digital signal connection with a bit rate of 2.048 Mbit/sec
(DS2 interface). Here the signals of two DS1 interfaces are combined together. A
total of 16 programs are transmitted to the satellite TV-Sat 1. At the receiver
side, the satellite signal is fed to a DSR receiver via the coaxial network of the
Deutsche Bundespost at 118 MHz. As an alternative, it is also possible to receive
DSR with a personal satellite receiver (Fig. 1.5, [Ple85]).

Terrestrial Digital Broadcasting (DAB)

With the introduction of terrestrial digital broadcasting, the quality standards
of a compact disc will be achieved for mobile and stationary reception of radio
signals [Ple91]. Therefore, the data rate of a two-channel AES/EBU signal from
a transmitting studio is reduced with the help of a source coder [Bra94] (see
Fig. 1.6). Following the source coder (SC), additional information (AI) like the
type of program (music/speech) and traffic information is added. A multicarrier
technique is applied for digital transmission to stationary and mobile receivers.
At the transmitter, several broadcasting programs are combined in a multiplexer

2data rate: 2x(14 data bits + 1 parity bit)x 32 kHz + 2x4x 8 kHz = 1.024 Mbit/s
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Figure 1.4 Studio - ground station (TSI = clock signal 1024 kHz).
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Figure 1.5 Digital Satellite Broadcasting - receiving system.

(MUX) to form a multiplex signal. The channel coding and modulation is carried
out with a multi-carrier transmission technique (Coded Orthogonal Frequency
Division Multiplex, [Ala87],[Kam92a],[Kam92b],[Kam93],[Tui93]).

The DAB receiver (Fig. 1.7) consists of the demodulator (DMOD), the de-
multiplexer (DMUX) and the source decoder (SD). The SD provides a linearly
quantized PCM signal (Pulse Code Modulation {Jay84]). The PCM signal is fed
over a Digital-to-Analog Converter (DA converter) to an amplifier connected to
loudspeakers.

For a more detailed description of the DAB transmission technique, an illu-
stration based on filter banks is presented (see Fig. 1.8). The audio signal at a
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Broadcast studio | Distribution | Transmitter
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Figure 1.6 DAB transmitter.
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Figure 1.7 DAB receiver.

data rate of 768 kbit/s is decomposed into subbands with the help of an analy-
sis filter bank (AFB). Quantization and coding based on psychoacoustic models
is carried out within each subband. The data reduction leads to a data rate of
96-192 kbit/s. The quantized subband signals are provided with additional infor-
mation (header) and combined together in a frame. This so-called ISO-MPEG1
frame [ISO92] is first subjected to channel coding (CC). Time-interleaving (T-1L)
follows and will be described later on. The individual transmitting programs are
combined in frequency multiplex (frequency-interleaving F-IL) with a synthesis
filter bank (SFB) to one broadband transmitting signal. The synthesis filter bank
has several complex-valued input signals and one complex-valued output signal.
The real-valued band-pass signal is obtained by modulating with e/“<* and taking
the real part. At the receiver, the complex-valued baseband signal is obtained by
demodulation followed by low-pass filtering. The complex-valued analysis filter
bank provides the complex-valued band-pass signals from which the ISO-MPEG1
frame is formed after frequency and time deinterleaving and channel decoding.
The PCM signal is combined using the synthesis filter bank after extracting the
subband signals from the frame.
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Frame
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Figure 1.8 Filter banks within DAB.

DAB Transmission Technique. The special problems of mobile communi-
cations [Kam92a, Pro89] are dealt with using a combination of the OFDM trans-
mission technique with DPSK modulation and time and frequency interleaving.
Possible disturbances are minimized by consecutive channel coding. The schematic
diagram in Fig. 1.9 shows the relevant subsystems.

For example, the transmission of a program P, which is delivered as an ISO-
MPEGT1 stream is shown in Fig. 1.9. The channel coding doubles the data rate.
The typical characteristics of a mobile communication channel like time and fre-
quency selectivity are handled by using time and frequency interleaving with the
help of a multicarrier technique. The burst disturbances of consecutive bits are
reduced to single bit errors by spreading the bits over a longer period of time.
The narrow-band disturbances affect only individual carriers by spreading the
transmitter program P; in the frequency domain, i.e. distribution of transmitter
programs of carrier frequencies at a certain displacement. The remaining distur-
bances of the mobile channel are suppressed with the help of channel coding, i.e.
by adding redundancy, and decoding with a Viterbi decoder. The implementation
of an OFDM transmission is discussed in the following.
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Figure 1.9 DAB transmission technique.

OFDM Transmission. The OFDM transmission technique is shown in Fig.
1.10. The technique stands out owing to its simple implementation in the digital
domain. The data sequence ¢;(k) which is to be transmitted, is written blockwise
into a register of length 2M . The complex numbers from d; (m) to das(m) are for-
med from two consecutive bits (dibits). Here the first bit corresponds to the real
part and the second to the imaginary part. The signal space shows the four states
for the so-called QPSK [Kam92a, Pro89]. The vector d(m) is transformed with an
inverse FFT (Fast Fourier Transform, {Gab87, F1i91]) into a vector e{m) which
describes the values of the transmitted symbol in the time domain. The transmit-
ted symbol z;(n) with period Tsym, is formed by the transmission of the M complex
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Figure 1.10 OFDM transmission.

numbers e;(m) at sampling period Ts. The real-valued band-pass signal is formed
at high frequency after DA conversion of the quadrature signals, modulation by
e/“<t and by taking the real part. At the receiver, the transmitted symbol becomes
a complex-valued sequence z.(n) by demodulation with e~ and AD conversion
of the quadrature signal. M samples of the received sequence z,(n) are distribu-
ted over the M input values f;(m) and transformed into the frequency domain
with the help of FFT. The resulting complex numbers g;(m) are again converted
to dibits and provide the received sequence c,.(k). Without the influence of the
communication channel, the transmitted sequence can be reconstructed exactly.

OFDM Transmission with a Guard Interval. In order to describe the
OFDM transmission with a guard interval, the schematic diagram in Fig. 1.11 is
considered. The transmission of a symbol of length M over a channel with impulse
response h{n) of length L leads to a received signal y(n) of length M + L — 1. This
means that the received symbol is longer than the transmitted signal. The exact
reconstruction of the transmitted symbol is disturbed because of the overlapping
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Figure 1.11 OFDM transmission with a guard interval.

of received symbols. Reconstruction of the transmitted symbol is possible by cy-
clic continuation of the transmitted symbol. Here, the complex numbers from the



1.3 Storage Media 11

vector e(m) are repeated so as to give a symbol period of Tsym = (M + L)Ts.
Each of the transmitted symbols is, therefore, extended to a length of M + L.
After transmission over a channel with impulse response of length L, the response
of the channel is periodic with length M. After the initial transient state of the
channel, i.e. after the L samples of the guard interval, the following M samples
are written into a register. Since a time delay occurs between the start of the
transmitted symbol and the sampling shifted by L displacements, it is necessary
to shift the sequence of length M cyclically by L displacements. The inverse FFT
provides the received vector g(m). The complex values g;{m) do not correspond
to the exact transmitted values d;(m) because of the transmission channel h(n).
However, there is no influence of neighboring carrier frequencies. Every received
value g;(m) is weighted with the corresponding magnitude and phase of the chan-
nel at the specific carrier frequency. The influence of the communication channel
can be eliminated by differential coding of consecutive dibits [Kam92a, Pro89.
The decoding process can be done according to z;(m) = gi(m)g; (m — 1). The di-
bit corresponds to the sign of the real and imaginary parts. The DAB transmission
technique presented stands out owing to its simple implementation with the help
of FFT algorithms. The extension of the transmitted symbol by a length L of the
channel impulse response and the synchronization to collect the M samples out of
the received symbol have still to be carried out. The length of the guard interval
must be matched to the maximum echo delay of the multipath channel. Owing to
differential coding of the transmitted sequence, an equalizer at the receiver is not
necessary.

1.3 Storage Media

Compact Disc

The technological advances in the semiconductor industry have led to economical
storage media for digitally encoded information. Independently of the develop-
ments in the computer business, the compact disc system was introduced by Phi-
lips and Sony in 1982. The storage of digital audio data is carried out on an optical
storage medium. The compact disc operates at a sampling rate of fg = 44.1 kHz3.
The essential specifications are summed up in Table 1.2.

33 x 490 x 30 Hz (NTSC) = 3 x 588 x 25 Hz (CCIR) = 44.1 kHz
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Table 1.2 Specifications of the CD system [Ben88].

Type of recording

Signal recognition optical

Storage density 682 Mbit/in?

Audio specification

Number of channels 2

Duration approx. 60 min

Frequency range 20-20000 Hz

Dynamic range > 90 dB

THD < 0.01 %

Signal format

Sampling rate 44.1 kHz

Quantization 16-Bit PCM (2’s-complement)

Preemphasis none or 50/15 us

Error Correction CIRC

Data rate 2.034 Mbit/s

Modulation EFM

Channel bit rate 4.3218 Mbit/s

Redundancy 30 %

Mechanical specification

Diameter 120 mm

Thickness 1.2 mm

Diameter of the inner hole 15 mm

Program range 50-116 mm

Reading speed 12-14m/s
500 - 200 r/min

DASH (Digital Audio Stationary Head)

The DASH system serves to record multiple audio channels in the field of profes-
sional audio production. It is based on longitudinal track recording (Table 1.3) on
magnetic tape. Apart from analog interfaces with band-limiting and reconstruction
filters and AD/DA converters, purely digital interfaces are also available.

R-DAT (Rotary-Head Digital Audio on Tape)

The R-DAT system makes use of the heliscan method for two-channel recording.
The available devices enable the recording of 16 bit PCM signals with all three
sampling rates (Table 1.4) on a tape. R-DAT recorders are used in studio recording
as well as in consumer applications.
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Table 1.3 Specifications of the DASH system [Ben88].

Type of recording

Signal recognition magnetic

storage capacity > 16 GB

Audio specification

Number of channels 24, 48

Signal format

Sampling rate 48, 44.1, 32 kHz

Quantization 16 bit, 20 bit PCM (2s complement)
Error correction CRC

Mechanical specification

Tapewidth of magnet 1/2 in

Lin. trackspeed 19.05, 38.1, 76.2 cm/s (48 kHz)

Table 1.4 Specifications of the R-DAT system [Ben88].

Type of recording
Signal recognition magnetic
storage capacity 2 GB
Audio specification
Number of channels 2
Duration max. 120 min
Frequency range 20-20000 Hz
Dynamic range > 90 dB
THD <0.01%
Signal format
Sampling rate 48, 44.1, 32 kHz
Quantization 16 bit PCM (2s complement)
Error correction CIRC
Channel coding 8/10 modulation
Data rate 2.46 Mbit/s
Channel bit rate 9.4 Mbit/s
Mechanical specification
Tapewidth of magnet 3.8 mm
Thickness 13 pm
Diameter of head drum 3 cm
Revolutions per min 2000 r/min
Rel. track speed 3.133 m/s

500°- 200 r/min
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DCC (PASC) and Mini Disc (ATRAC)

The techniques of storage for the DCC system (Digital Compact Cassette) and
the Mini Disc system are based on source coding techniques that make use of
psychoacoustic effects for reducing data rates. The DCC system uses the PASC
technique (Precision Adaptive Subband Coding [Wir91]) and operates at 2:192
kbit /s for a stereo channel. A compact cassette (magnetic tape) serves as a storage
medium for analog and digital signals. The Mini Disc system operates with the
ATRAC technique (Adaptive Transform Acoustic Coding, [Tsu92]) and has a data
rate of about 2-140 kbit /s for a stereo channel. A magneto-optical storage medium
is used for recording.

Hard Disc Recording Systems

Apart from the specially developed digital recording systems for audio purposes,
hard disc storage media enable new recording concepts. Recording systems based
on magnetic and magneto-optical concepts provide new operating philosophies
with different recording strategies. This is because spooling times of tape machines
do not occur and fast access to audio signals is possible. Moreover, the provisions
of editing in the digital domain are very useful. Hence, as well as the acoustic
control, the visual presentation of audio signals on a screen simplifies and improves
the processing.

1.4 Audio Components at Home

The domestic digital storage media already in use, like compact discs, DAT recor-
ders and DCC/Mini Disc, which have digital outputs, can be connected to digital
post-processing systems right up to the loudspeakers. The individual tone control
consists of the following processing.

Equalizer

Spectral modification of the music signal in amplitude and phase and the automatic
correction of the frequency response from loudspeaker to listening environment is
desired.
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Room Simulation

The simulation of room impulse responses and the processing of music signals
with special room impulse response are used to give an impression of a room like
a concert hall, a cathedral or a jazz club.

Surround Systems

Besides the reproduction of stereo signals from a CD over two frontal loudspea-
kers, more than two channels will be recorded in the prospective digital recording
systems [Lin93]. This is already illustrated in the sound production for cinema
movies where besides the stereo signal (L, R), a middle channel (M) and two ad-
ditional room signals (L g, Rp) are recorded. These surround systems are also used
in the prospective digital television systems. The ambisonics technique [Ger85] is
a recording technique that allows three-dimensional recording and reproduction of
sound.

Digital Amplifier Concepts

The basis of a digital amplifier is pulse width modulation as shown in Fig. 1.12.
With the help of a fast counter, a pulse width modulated signal is formed out
of the w bit linearly quantized signal. Single-sided and double-sided modulated
conversion are used and they are represented by two and three states respectively.
Single-sided modulation (2 states, -1 and +1) is performed by a counter which
counts upward from zero with multiples of the sampling rate. The number range
of the PCM signal from -1 to +1 is directly mapped onto the counter. The duration
of the pulse width is controlled by a comparator. For pulse width modulation with
three states (-1, 0, +1), the sign of the PCM signal determines the state. The
pulse width is determined by a mapping of the number range from 0 to 1 onto
a counter. For double-sided modulation, an upward/downward counter is needed
which has to be clocked at twice the rate compared with single-sided modulation.
The allocation of pulse widths is shown in Fig. 1.12. In order to reduce the clock
rate for the counter, pulse width modulation is carried out after oversampling
(Oversampling) and noise shaping (Noise Shaping) of the quantization error (see
Fig. 1.13, [Gol90]). Thus the clock rate of the counter is reduced to 180.6 MHz. The
input signal is first upsampled by a factor of 16 and then quantized to 8 bits with
third-order noise shaping. The use of pulse shaping with delta-sigma modulation is
shown in Fig. 1.14 [And92]. Here a direct conversion of the delta-sigma modulated
1 bit signal is performed. The pulse converter shapes the envelope of the serial
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Figure 1.13 Pulse width modulation with oversampling and noise shaping.

data bits. The low-pass filter reconstructs the analog signal. In order to reduce
nonlinear distortion, the output signal is fed back (see Fig. 1.15, [Klu92]).
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Figure 1.14 Pulse shaping after delta-sigma modulation.
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Figure 1.15 Delta-sigma modulated amplifier with feedback.

Digital Crossover

In order to perform digital crossovers for loudspeakers, a linear phase decomposi-
tion of the signal with a special filter bank [Z6192] is done (Fig. 1.16). In a first
step, the input signal is decomposed into its high-pass and low-pass components
and the high-pass signal is fed to a DAC over a delay unit. In the next step, the
low-pass signal is further decomposed. The individual band-pass signals and the
low-pass signal are then fed to the respective loudspeaker.
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Figure 1.16 Digital crossover (FS; frequency splitting, TC; transition bandwidth con-

trol, DEL; delay).

Digital Audio Systems in an Automobile

The special listening conditions in a car demand the matching of reproduction
dynamics to velocity-dependent noise, as well as improving the room acoustics

inside a car [Scp92].




Chapter 2

Quantization

The digitization of a sampled signal with continuous amplitude is called quanti-
zation. The effects of quantization starting with the classical quantization model
are discussed in the first section. In the second section dither techniques are pre-
sented which, for low-level signals, linearize the process of quantization. In the
third section, spectral shaping of quantization errors is described. The last sec-
tion deals with number representation for digital audio signals and their effects on
algorithms.

2.1 Signal Quantization

2.1.1 Classical Quantization Model

Quantization is described by Widrow’s Quantization Theorem [Wid61]. It says that
a quantizer can be modeled (see Fig. 2.1) as the addition of a uniform distributed
random signal e and the original unquantized signal z. In order to simplify the
notation, the time indices n of z, e and z¢ have been omitted. This linear model
of the output z¢ is only then valid when the input amplitude has a wide dynamic
range and the quantization error is not correlated with the signal z. Owing to
the statistical independence of consecutive quantization errors, the power density
spectrum is constant over all frequencies.

The nonlinear process of quantization is described by a nonlinear characteristic
curve as shown in Fig. 2.2a where ) denotes the quantization step. The difference
between output and input of the quantizer provides the quantization error

e=2zg — 2, (2.1)

19
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Figure 2.1 Quantization.

which is shown in Fig. 2.2b. The uniform probability density function (PDF) of
the quantization error is given (see Fig. 2.2b) by

pe(e) = lrect(

Q

) (2.2)

Ol o

a)

b)

Figure 2.2 a) Nonlinear characteristic curve of a quantizer. b) Quantization error e and
its probability density function (PDF) pg(e).

The mth moment of a random variable E with a PDF pg(e) is defined as the
expected value of E™:

EE™] = /00 e"pr(e)de. (2.3)

— o0

For a uniform distributed random process, as in Equation (2.2), the first two
moments are given by

mg = E[E] mean value (2.4)

l
@O

0% = E[E?] = 15 variance. (2.5)
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The signal-to-noise ratio (Signal-to-Noise Ratio)
o2
SNR = 10log,, (a—§> [dB] (2.6)
E
is defined as the ratio of signal power to error power.

For a quantizer with input range *z,,,, and word-length w, the quantization
step size can be expressed as

Q = 204z /2" (2.7)
By defining a peak factor
w—1
Pp = Tmaz _ 2 @ (2.8)
ax ox

the variances of the input and the quantization error can be written as

:122

2 _ ax
oy = ;—1?“ and (2.9)
2 2
> _ QF_ 1z 2 _ 1 4 -2
o = '1—2— = ﬁ—ﬁQ = gzz:muZ w . (210)

The signal-to-noise ratio is then given by

xfnaz/Pg‘ u) 3
SNR. = 10105 ( £l ) <1010, (2 )
= 6.02w— 10log;o(PE/3)  [dB]. (2.11)

A sinusoidal signal (PDF as in Fig. 2.3) with Pr = /2, gives
SNR = 6.02w + 1.76  (dB]. (2.12)
For a signal with uniform PDF (see Fig. 2.3) and Pr = /3 we can write
SNR = 6.02w [dB] (2.13)

and for a Gaussian distributed signal (probability of overload < 10~° leads to
Pr = 461, see Fig. 2.4), it follows that

SNR = 6.02w — 85  [dB]. (2.14)

It is obvious that the signal-to-noise ratio depends on the PDF of the input.
For digital audio signals that exhibit nearly Gaussian distribution, the maximum
signal-to-noise ratio for given word-length w, is 8.5 dB lower than the rule of thumb
formula (2.13) for the signal-to-noise ratio.
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Figure 2.4 Probability density function (signal with Gaussian PDF).

2.1.2 Quantization Theorem

The statement of the quantization theorem for amplitude sampling (digitizing the
amplitude) of signals has been given by Widrow [Wid61]. The analogy for digitizing
the time axis is the sampling theorem given by Shannon [Sha48]. First of all, the
PDF of the output signal of a quantizer is determined in terms of the PDF of the
input signal. The respective characteristic functions (Fourier transform of a PDF)
of the input and output signals form the basis for Widrow’s quantization theorem.
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First-order Statistics of the Quantizer Output

Quantization of a continuous-amplitude signal z with PDF px(z) leads to a
discrete-amplitude signal y with PDF py (y) (see Fig. 2.5). The continuous PDF of
the input is sampled by integrating over all quantizatioﬁ intervals (zone sampling).
This leads to a discrete PDF of the output.

x y
px(XT pyly)

H

3Q  4a  3a 20 Q

Figure 2.5 Zone sampling of the PDF.

In the quantization intervals, the discrete PDF of the output is determined by
the probability

F+rQ
WikQ] = W[—% +kQ <z < % +kQ] = f px ()dz. (2.15)
~$+kQ
For the intervals £ = 0, 1, 2, it follows that
g
py(y) = 8(0) [ px(z)dz _% <y< %2,
-9
2
£2+Q
= Sy-Q) [ pxlo)s ~§+Q<y<$+0Q,
-3+Q
2+2Q
= 0y-2Q) [ px(@)dz ~2+20<y< 2 +2Q.
-$+2Q

The summation over all intervals gives the PDF of the output

py(W) = D 8- kQW(kQ) (2.16)
k=—00
= ) My kQW() (2.17)

k=—00
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where
%-}-kQ ’
W(kQ) = / px(z)dz (2.18)
- F+kQ
W(y) = /:1 rect(y Z;)x)px(z)dac (2.19)
= rect(g) *px (¥). (2.20)
Q
Using
> 6y -kQ) (2.21)
k=—c
the PDF of the output is given by
pr(v) = do()lrect( 5) + px (v)] (2.22)

The PDF of the output can hence be determined by convolution of a rect-function
[Lip92] with the PDF of the input. This is followed by an amplitude sampling with
resolution @ as described in (2.22) (see Fig. 2.6).

1 Q
Py (¥) . Jj:l_. N Py(¥)
35

Figure 2.6 Determining PDF of the output.

Using FT{f1(t)-f2(t)} = 5 F1 (jw)*F2(jw), the characteristic function (Fourier
transform of py (y)) can be written as

in(u€
Py (ju) = —uo Z Ju—kuo)*[ sin(u3 )'Px(ju) (2.23)
k=-0c0 2
o wT
with Uy = o)
> sin(u %
= Z 6(u—ku0)*[ (Qz) -Px(ju)] (2.24)
k=—co ’ll,?
5 ~ sin[(u — ku,)¥]
Pt = 32 P shu) = e (2.25)
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Equation (2.25) describes the sampling of the continuous PDF of the input. If
the quantization frequency u, = 27/Q is twice the highest frequency of the charac-
teristic function Px (ju) then periodically recurring spectra do not overlap. Hence,
a reconstruction of the PDF of the input px(z) from the quantized PDF of the
output py (y) is possible (see Fig. 2.7). This is known as the Quantization Theorem
of Widrow. Contrary to the first sampling theorem (Shannon’s Sampling Theorem,

P x(X) Py (u)

sm(u
Py(Uu)}——

Ll A M\W/\ A

Figure 2.7 Spectral representation.

ideal amplitude sampling in the time domain) FA(jw) = + Y32 F(jw — jkw,),
it can be observed that there is an additional multiplication of the periodically

characteristic function with %‘w—")&— (see Equ. (2.25)).

If the baseband of the characteristic function (k = 0)

. _ . sin(u
Py (ju) = Py (ju) 202
us
N —
Pp(ju)

0|

(2.26)

is considered, it is observed that it is a product of two characteristic functions. The
multiplication of characteristic functions leads to the convolution of PDFs from
which the addition of two statistically independent signals can be concluded. The
characteristic function of the quantization error is hence

in(u%
Pg(ju) = ———Sm(g'z) (2.27)
U3
and the PDF .
pE(e) = arecf(é) (2.28)

(see Fig. 2.8).
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Figure 2.8 PDF and characteristic function of quantization error.

The modeling of the quantization process as an addition of a statistically inde-
pendent noise signal to an unquantized input signal leads to a continuous PDF of
the output (see Fig. 2.9, convolution of PDFs and sampling in the interval @ gives
the discrete PDF of the output). The PDF of the discrete-valued output comprises

Px+E(Y)=Px*p £

Figure 2.9 PDF of model.

Dirac pulses at distance ¢ with values equal to the continuous PDF (see Equation
(2.22)). Only if the Quantization Theorem is valid, the continuous PDF can be
reconstructed from the discrete PDF.

In many cases, it is not necessary to reconstruct the PDF of the input. It is
sufficient to calculate the moments of the input from the output. The mth moment
can be expressed in terms of the PDF or the characteristic function:

EY™] = f y"py (y)dy (2.29)
= (—j)m%#“—) (2.30)
u=0

If the Quantization Theorem is satisfied then the periodic terms in (2.25) do not
overlap and the mth derivative of Py (ju) is solely determined by the baseband!
so that with (2.25), it can be written

m in(u¥
BIY™) = (=)™ P () 2 2)

— (2.31)
du u%—

u=0

IThis is also valid owing to the weaker condition of Sripad and Snyder [Sri77] discussed in
the next section.
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With Equation (2.31), the first two moments can be determined as

my = E[Y] = E[X], (2.32)
0} = E[Y? = E[X?+ —2. (2.33)
o ¥

B

Second-order Statistics of Quantizer Output

In order to describe the properties of the output in the frequency domain, two
output values y; (at time ¢;) and yo (at time ¢2) are considered [Lip92]. For the
joint density function:

Pyiva (U, 4) = 5QQ(y1,y2>[rect(%, %) %P, %, (91, 92))] (2.34)

Wlth
6@ (y1,¥2) = dqy1) - 6o (y2) (2.35)

and

rect(%l, %2-) = rect%‘) : rect(%). (2.36)

For the two-dimensional Fourier transform, it follows that

Pyy,(jur, jus) = D D 8(ur — kuo)d(uz — lu,)

k=—o0l=-00

; Q ; Q

sin(u sy

( 5122) ' ( ;2) 'PX1X2(ju1’ju2) (237)
Uy 5

U12

e s} o0
= Z Z Px, x,(Fur — jkue, jus — jlu,)

k=—o0l=—0c0
sin[(u; — ku,) %—] sinf{ug — luo)%]

(uy — kuo)% (ug — luo)—g'—

(2.38)

Similar to the one-dimensional Quantization Theorem, a two-dimensional theorem
[Wid61] can be formulated: the joint density function of the input can be recon-
structed from the joint density function of the output, if Px, x, (ju1, juz) = 0 for
u1 > Us/2 and us > u,/2. Here again, the moments of the joint density function
can be calculated as follows:

: gmtn sin(u; €) sin(us 2)
m ny _ (__\ym+n . .
E[Yl YZ ] - ( j) au;naugpxlxz(]ul)]u2)

Ul% U2~
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From this, the autocorrelation function with Kk = £, — ¢; can be written as

EXI)+% k=0

2.40
E[X1X5](k) elsewhere (2.40)

ryy(5) = E[Y1Y3](s) = {

(for k = 0 we obtain Equation (2.33)).

2.1.3 Statistics of Quantization Error
First-order Statistics of Quantization Error

The probability density function (PDF) of the quantization error depends on the
PDF of the input and is dealt with in the following. The quantization error e =

[0 ]} J—
-Q/2

-Qrzl Q2

Figure 2.10 Probability density function and guantization error.

T¢g — z is restricted to the interval [—%, %] It depends linearly on the input (see

Fig.2.10). If the input value lies in the interval [—%, %] then the erroris e = 0 —z.
For the PDF we obtain pg(e) = px(e). If the input value lies in the interval
[—% + Q, —2'- + @] then the quantization error is e = Q@ 'z + 0.5] — = and is
again restricted to [ﬂ%)-, %] The PDF of the quantization error is consequently
pe(e) = px(e + Q) and is added to the first term. For the sum over all intervals

we can write

3 _ Qe
prle) = k:z_:oopX(e kQ) PEe<y (2.41)

0 elsewhere

Because of the restricted values of the variable of the PDF, we can write

[0 o]

pele) = rect(%) Z px (e —kQ) (2.42)
k=—00
- rect(%)[px(e)*JQ(e)]. (2.43)
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The PDF of the quantization error is determined by the PDF of the input and can
be computed by shifting and windowing a zone. All individual zones are summed
up for calculating the PDF of the quantization error [Lip92]. A simple graphical
interpretation of this overlapping is shown in Fig. 2.11. The overlapping leads to

Qj2 Q2

1 p E(e)
1

e > g
-Q/2 Q2 -Q/2 Q/2
Figure 2.11 Probability density function of the quantization error.

a uniform distribution of the quantization error if the input PDF px (z) is spread
over a sufficient number of quantization intervals.

For the Fourier transform of the PDF from (2.43) follows

in(u% T —
Pg(ju) = %QS IE_Q—Q) % PX(]U)% Z S(u — kuo)] (2.44)
2 k=—00
in(u2 >
= S (QQ) * [ Z Px (5kuo)d(u — kuo)] (2.45)
U 2 k=—o00
00 : Q
= 3 Pxljku) {Sm(?) s (u - kuo)] (2.46)
k=—00 u 2

sin((u — kuo) %]

(u— kuo)%

Pp(ju) = > Px(jkuo)

k=—-o00

(2.47)
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If the Quantization Theorem is satisfied, i.e. if Px(ju) = 0 for v > u,/2, then
there is only one non-zero term (k = 0 in Equ. (2.47)). The characteristic function
of the quantization error is reduced, with Px(0) =1, to

; Q
sin(u*
Pg(ju) = v3), (2.48)
U3
Hence, for the quantization error:
(€) = ~rect(Z) (2.49)
e) = —rect(=). .
PE 0 0

Sripad and Snyder [Sri77] have modified the sufficient condition of Widrow
(band-limited characteristic function of input) for a quantization error of uniform
PDF by the weaker condition

2mk
Py (jkuo) = Px (j%) —0 forall k#0. (2.50)
The uniform distribution of the input PDF
1 T
T) = —rect(—= 2.51
px () 0 (Q) (2.51)
with characteristic function
infu€
Px (ju) = Sm(q_éf) (2.52)
u

2

does not satisfy Widrow’s condition for a band-limited characteristic function, but
instead the weaker condition

27rk) _ sin{7k)
Q' 7k
is fulfilled. From this follows the uniform PDF (2.48) of the quantization error.

The weaker condition from Sripad and Snyder extends the class of input signals
for which a uniform PDF of the quantization error can be assumed.

Px(j =0 for all k #0 (2.53)

In order to show the deviation from the uniform PDF of the quantization error
as a function of the PDF of the input, (2.47) can be written as

sin[ugﬂ] N i Py 2nk  sin[(u — kuo)%]

Pr(iu = P‘ 0
& (ju) <(0) Wd i) (u ~ kuo)§
s 0 infu@
- Il e k). 259
Uy k=—co,k Q7 ug
=—00,k#0 2
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The inverse Fourier transform yields

27k 2wke

pple) = %rect D+ . gk#o Px (25 Jexp(i )] (2.55)
{ [1 + Ek-’/—‘O PX( Tk)exp(.j 2188 )] _9 < e< Q (2 56)
0 elsewhere

Equation (2.55) shows the effect of the input PDF on the deviation from a uniform
PDF.

Second-order Statistics of Quantization Error

For describing the spectral properties of the error signal, two values e; (at time
t1) and ey (at time t;) are considered [Lip92). The joint PDF is given by

PE B, (€1, €2) = rect(%, %)prlmel,ea) « 8 (er,es)]. (2.57)

Here dggfer, e2) = dgler) - 6gle2) and rect(Q, %) = rect() - rect(%). For the
Fourier transform of the joint PDF, a similar procedure to that shown by (2.44)-
(2.47) leads to

Pig, (Juy, jus) = Y Y Px,x,(3kito, jkau,)

ki=—o00 ka=—00

sinf(uy — kiuo) 2] sinf(uz — kauo) 4]

2 (2.58)
(u1 — kiuo) (w2 — kauo)$

If the quantization theorem and/or the Sripad-Snyder condition

Px, x,(jk1uo, jkouo) =0 for all ki, ka #0 (2.59)
are satisfied 2 2
. . sinfuy | sin|u
Pg, g, (Jur, jus) = [ éz] | ;2]- (2.60)
U1 5 U 3

For the joint PDF of the quantization error, it hence holds that
PE, ,(€1,€2) = arect(a) %rect(%) — % <enep < % (2.61)
= pg(e1)  pe,(e2). (2.62)

Due to the statistical independence of quantization errors (Equation (2.62)),

E[E{™E3"] = E[E1™] - E[E3"]. (2.63)
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For the moments of the joint PDF,
am-}-n

mE n — __aym+n
E[E1™Eg"] = (-j) Furou

PE;EZ(Ul,'UQ) . (264)

w1 =0,u2=0

From this, it follows for the autocorrelation function with k = {5 — ¢;

‘ . _ E[E?] k=0

ree(r) = E[B1E](x) = { E[E1Es]|(k) elsewhere (2.65)
. %ﬁ k=20
- { 02 elsewhere (2.66)

Correlation of Signal and Quantization Error

For describing the correlation of the signal and the quantization error [Sri77], the
second moment of the output with Equation (2.25) is derived as follows:

o A2 Py (ju)
E[Y?] = (-j)——-~2 .
[Y~] (=) == . (2.67)
g = [ 27k sin(wk)
= —4)? Py(——
- 3 BT
. 27k sin(mk) — 7wk cos(mk)
Py(—
+QPx( 0 ) —532
Q? 27k (2 — 72k?) sin(mk) — 27wk cos(wk)
+ T Px(- ) oy (2.68)
. = -1k . 2nk .
= E[X*+ © > (=1) Px(-<E5) + E[E?). (2.69)
s k Q
k=—o00,k#0
With the quantization error e = y — z,
E[Y?] = E[X?] + 2E[XE] + E[E?], (2.70)
where the term E[XE], with (2.69), is written as
Q= (=D*. ok
EXE]=>= Y Px(—=). (2.71)
am k=—c0,k#0 k Q
With the assumption of a Gaussian PDF of the input we obtain
1 —z?
= 72
pX(iE) \/Q_ﬂ'dexp( 20.2 ) (2 7 )
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with the characteristic function

—ulo?
Py (ju) = exp( =5 ). (2.73)
Using (2.56) the PDF of the quantization error is then given by
o0 2mke 2ntk?o?
1 ot _8 <« Q
pu(e)={ @' TR Tr)] mEses<d gy
0 elsewhere.

Figure 2.12a shows the PDF (2.74) of the quantization error for different variances
of the input.

b}
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Figure 2.12 a) PDF of quantization error for different standard deviations of a Gaus-
sian PDF input. b) Variance of quantization error for different standard deviation of a
Gaussian PDF input.

For the mean value and the variance of a quantization error, it follows with
Equation (2.74) that E[E] = 0 and

‘ o0 Q? 12 < (—1)F 2m2k2g?
E[E2]=f_ooeng(e)de:ﬁ [H;;; - exp(——Tr—Qbi) . (2.75)

Figure 2.12b shows the variance of the quantization error (2.75) for different va-
riances of the input.

For a Gaussian PDF input as given by (2.72) and (2.73), the correlation (see
Equation (2.71)) between input and quantization error is expressed as

2m2k2g?

E(XE] = 20" (-1)Fexp(- >

k=1

). (2.76)

The correlation is negligible for large values of R
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2.2 Dither

2.2.1 Basics

The requantization (renewed quantization of already quantized signals) to limited
word-lengths occurs repeatedly during storage, format conversion and signal pro-
cessing algorithms. Here, small signal levels lead to error signals which depend on
the input. Owing to quantization, nonlinear distortion occurs for low level signals.
The conditions for the classical quantization model are not satisfied anymore. To
reduce these effects for signals of small amplitude, a linearization of the nonlinear
characteristic curve of the quantizer is performed. This is done by adding a ran-
dom sequence d(n) to the quantized signal xz(n) (see Fig. 2.13) before the actual
quantization process. The specification of the word-length is shown in Fig. 2.14.
This random signal is called dither. The statistical independence of the error signal
from the input is not achieved, but the conditional moments of the error signal
can be affected [Lip92, Ger89, Wan92].

d(n)
(s bit)

x(n) Q p—-s ¥n)
(w+r bit) {w bit)

Figure 2.13 Addition of a random sequence before a quantizer.

+——— w bit rbit ——
i [ m ] s |
Sign Zero bits Dither

Figure 2.14 Specification of the word-length.

The sequence d(n), with amplitude range (_922 <dn) < %), is generated with
the help of a random number generator and is added to the input. For a dither
value with Q = 2—{»-1);

dp = k277Q -2 < <ol 21 (2.77)
The index k of the random number dj characterizes the value from the set of
N = 2% possible numbers with the probability

28 —9s5-1 S k < 23—1 -1

P(di) = { 0 elsewhere (2.78)

With the mean value d = ¥, dxP(dy), the variance o2 = ¥, [di — d]>P(d;) and
the quadratic mean d2 = ¥, d2 P(dy), we can rewrite the variance as 02 = Z-7.
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For a static input amplitude V' and the dither value dj, the rounding operation
[Lip86] is expressed as

V +d;
Q

For the mean of the output §(V') as a function of the input V, we can write

g(V+di)=0Q { + 0.5J . (2.79)

g(V) =" g(V + dx) P(dx). (2.80)
k

The quadratic mean of the output g2(V) for input V is given by

(V) =D gV +di) P(dy). (2.81)
k

For the variance d% (V) for input V
AR (V) = > {9(V +di) —g(V)}* P(di) = g2(V) - {g(V)}". (2.82)
k

The above-mentioned equations have the input V' as a parameter. Figures 2.15 and
2.16 illustrate the mean output §(V') and the standard deviation dg(V) within a
quantization step size, which are given by Equations (2.80), (2.81) and (2.82). The

Unipolar RECT Dither Unipolar TRI Dither
I . . . , 1
0.9} 09t
0.8 08t
T o7 T o1}
Z 06 Z 06}
& &
3 09 = 05
& 04 3 04y
S S
Z 03 Z 03
0.2 0.2}
0.1t 01} .
0 02 04 06 08 | 0 02 04 06 08 1
VIQ - VIQ -

Figure 2.15 Truncation - linearizing and suppression of noise modulation (s = 4, m = 0).

examples of rounding and truncation demonstrate the linearization of the charac-
teristic curve of the quantizer. The coarse step size is replaced by a finer one. The
quadratic deviation from the mean output d% (V) is termed noise modulation. For
a uniform PDF dither, this noise modulation depends on the amplitude (see Fig.
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Figure 2.16 Rounding - linearizing and suppression of noise modulation (s = 4, m = 1).

2.15 and 2.16). It is maximum in the middle of the quantization step size and ap-
proaches zero towards the end. The linearization and the suppression of tne noise
modulation can be achieved by a triangular PDF dither with bipolar characteristic
[Van89] and rounding operation (see Fig. 2.16). Triangular PDF dither is obtained
by adding two statistically independent dither signals with uniform PDF (convo-
lution of PDFs). A dither signal with higher-order PDF is not necessary for audio
signals [Lip92).

The total noise power for this quantization technique consists of the dither
power and the power of the quantization error [Lip86|. The following noise powers
are obtained by integration with respect to V' as follows:

1. Mean dither power d?:

Q
&£ = %/0 &2 (V)dV

(2.83)

1 Q
= 5] Twvrd-svpraa sy
k

(This is equal to the deviation from mean output in accordance with Equa-
tion (2.80).)

2. Mean of total noise power d?,,:

&, = lfQZ{g(V—kdk)—V}zP(dk)dV (2.85)
tot Q 0 -

(This is equal to the deviation from an ideal straight line.)
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In order to derive a relationship between d2,, and d?, the quantization error

given by
QV +diy) =gV +di) — (V + di) (2.86)

is used to rewrite (2.85) as
1 r9 .
By = Y PG [ (@ +d)+ 200V +do) + )V (287
& 0
= Y P )1/QQ2(V+d>dv
S *
123" dyP(d )lfQQ(V+d )dv
g RN A ; k
+> diP(d )l/Q dv (2.88)
i RGBT . .

The integrals in (2.88) are independent of di. Moreover ), P(dy) = 1. With the
mean value of the quantization error

1 9
ez L / Q(V)dv (2.89)
Q Jo
and the quadratic mean error
— 1 /@
e? = — / Q*(V)dV, (2.90)
Q Jo
it is possible to rewrite (2.88) as
2, = €2 + 2de + . (2.91)

, 5 — =2
With 02 = €2 — €* and 0% = d? — d', Equation (2.80) can be written as

d?, =02+ (d+&)?%+05| (2.92)

Equation (2.91) and (2.92) describe the total noise power as a function of the
quantization (€,e2,02) and the dither addition (d,d?,0%). It can be seen that for
zero-mean quantization, the middle term in Equation (2.92) results in d + & = 0.
The acoustically perceptible part of the total error power is represented by ¢ and

2
O-d-
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2.2.2 Implementation

The random sequence d(n) is generated with the help of a random number gene-
rator with uniform PDF. For generating a triangular PDF random sequence, two
independent uniform PDF random sequences d;(n) and ds(n) can be added. In
order to generate a triangular high-pass dither, the dither value d;(n) is added to
—d;(n — 1). Thus, only one random number generator is required. In conclusion,
the following dither sequences can be implemented:

drect(n) = di(n) (2.93)
drei(n) = di(n) +dx(n) (2.94)
dyp(n) = di(n) —di(n—-1). (2.95)

Power Density Spectrum

HP

Saale®¥Syg 4, =

0.5¢r
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fifg —

Figure 2.17 Normalized power density spectrum for triangular PDF dither (TRI) with
di(n) + d2(n) and triangular PDF high-pass dither (HP) with di{n) — di(n — 1).

The power density spectra of triangular PDF dither and triangular PDF HP
dither are shown in Fig. 2.17. Figure 2.18 shows histograms of a uniform PDF
dither and a triangular PDF high-pass dither together with their respective power
density spectra. The amplitude range of a uniform PDF dither lies between =@ /2
whereas it lies between +¢) for triangular PDF dither. The total noise power for
triangular PDF dither is doubled.
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a) Histogram RECT b) Histogram HP
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Figure 2.18 a,d) Histogram and c¢,d) power density spectrum of uniform PDF dither
(RECT) with d;(n) and triangular PDF high-pass dither (HP) with d;(n) —di(n - 1).

2.2.3 Examples

The effect of the input amnplitude of the quantizer is shown in Fig. 2.19 for a 16 bit
quantizer (Q = 27'%). A quantized sinusoidal signal with amplitude 27* (1 bit
amplitude) and frequency f/fs = 64/1024 is shown in Fig. 2.19a,b for rounding
and truncation. Figure 2.19c,d show their corresponding spectra. For truncation,
Fig. 2.19¢ shows the spectral line of the signal and the spectral distribution of
the quantization error with the harmonics of the input signal. For rounding Fig.
2.19d with special signal frequency f/fs = 64/1024, the quantization error is
concentrated in uneven harmonics.

In the following, only the rounding operation is used. By adding a uniform PDF
random signal to the actual signal before quantization, the quantized signal shown
in Fig. 2.20a results. The corresponding power density spectrum is illustrated in
Fig. 2.20c. In the time domain, it is observed that the 1 bit amplitudes approach
zero so that the regular pattern of the quantized signal is affected. The resulting
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Figure 2.19 1 bit amplitude - quantizer with truncation (a,c) and rounding (b,d).

power density spectrum in Fig. 2.20c shows that the harmonics do not occur
anymore and the noise power is uniformly distributed over the frequencies. For
triangular PDF dither, the quantized signal is shown in Fig. 2.20b. Owing to
triangular PDF, amplitudes £2@Q occur besides the signal values +(} and zero.
Figure 2.20d shows the increase of the total noise power.

In order to illustrate the noise modulation for uniform PDF dither, the am-
plitude of the input is reduced to A = 27!8 and the frequency is chosen as
f/fs = 14/1024. This means that input amplitude to the quantizer is 0.25 bit.
For a quantizer without additive dither, the quantized output signal is zero. For
RECT dither, the quantized signal is shown in Fig. 2.21a. The unquantized in-
put signal with amplitude 0.25¢) is also shown. The power density spectrum of
the quantized signal is shown in Fig. 2.21c. The spectral line of the signal and
the uniform distribution of the quantization error can be seen. But in the time
domain, a correlation between positive and negative amplitudes of the input and
the quantized positive and negative values of the output can be observed. In hea-
ring tests this noise modulation occurs if the amplitude of the input is decreased
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Figure 2.20 1 bit amplitude - rounding with RECT dither (a,c) and TRI dither (b,d).

continuously and falls below the amplitude of the quantization step. This process
occurs for all fade-out processes that occur in speech and music signals. For posi-
tive low-amplitude signals, two output states, zero and Q, occur, and for negative
low-amplitude signals, the output states zero and -Q, occur. This is observed as
a disturbing rattle which is overlapped to the actual signal. If the input level is
further reduced the quantized output approaches zero.

In order to reduce this noise modulation at low levels, a triangular PDF dither
is used. Figure 2.21b shows the quantized signal and Fig. 2.21d shows the power
density spectrum. It can be observed that the quantized signal has an irregular
pattern. Hence a direct association of positive half-waves with the positive output
values as well as vice versa is not possible. The power density spectrum shows that
spectral line of the signal along with an increase in noise power owing to triangular
PDF dither. In acoustic hearing tests, the use of triangular PDF dither results in
a constant noise floor even if the input level is reduced to zero.
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Figure 2.21 0.25 bit amplitude - rounding with RECT dither (a,¢) and TRI dither (b,d).

2.3 Spectrum Shaping of Quantization -
Noise Shaping

Using the linear model of a quantizer in Fig. 2.22 and the relations

e(n) = y(n) - a(n) (2.96)
y(n) = [z(n)lq (2.97)
= z(n) + e(n), (2.98)

the quantization error e(n) may be isolated and fed back through a transfer
function H(z) as shown in Fig. 2.23. This leads to the spectral shaping of the
quantization error as given by

y(n) = [z(n) —e(n) % h(n)lg (2.99)
= z(n) + e(n) — e(n) x h(n) (2.100)
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x(n) o Q y(n)

P
'\I/‘
e(n)

Figure 2.22 Linear model of quantizer.

ex(n) = yn)-zn)
= e(n)*[1 = h(n)]

and the corresponding Z-transforms

Y(z2) = X(2)+E()[1-H(2)]
Ei(z) = E(2)1- H(z)].

x(n) + Q @ y(n)

e(n)
H(z)

Figure 2.23 Spectrum shaping of quantization error.

43

(2.101)
(2.102)

(2.103)
(2.104)

A simple spectrum shaping of the quantization error e(n) is achieved by feeding

back with H(z) = 27! as shown in Fig. 2.24, and leads to

y(n) = [z(n)—e(n-1)g
z(n) —e(n — 1) + e(n)
eiln) = y(n)—=z(n)
= e(n)—e(n—1)

and the Z-transforms

Y(z) = X(2)+E(2)[1-27"]
E(z) = E(z)[1-z7"

Equation (2.110) shows a high-pass weighting of the original error signal e(n). By
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x(n) + Q —o y(n)

%
z-1

Figure 2.24 High-pass spectrum shaping of quantization error.

choosing H(z) = z7'(—2 + z~!), second-order high-pass weighting given by
Ey(2) = E(2)[1 — 227" + 277] (2.111)

can be achieved. The power density spectrum of the error signal for the two cases
is given by

Serer (€)= 1 —€790125,, (/) (2.112)
Seper (67 = |1 =272 47729225, (7). (2.113)

Figure 2.25 shows the weighting of power density spectrum by this noise shaping
technique.

Power Density Spectrum

0 005 01 015 02 025 03 035 04 045 05
f/fs -5

Figure 2.25 Spectrum shaping (Sec(€??) -+, Seye, (67%) —, Sepe,(67%) - - - ).

By adding a dither signal d(n) (see Fig. 2.26), the output and the error are
given by

y(n) = [s(n)+d(n) —e(n - Do (2.114)
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= z(n)+d(n)—e(n—-1)+en)
and

er(n) = y(n)—=z(n)
= d(n) +e(n) —e(n-1).

For the Z-transforms we write

Y(z) = X()+E@E)[1 -2+ D)
Ei(z) = E()[1-2z7"+D(2).
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(2.115)

(2.116)
(2.117)

(2.118)
(2.119)

The modified error signal e;(n) consists of the dither and the high-pass shaped

quantization error.

d(n)

x(n) + Q o y(n)

Z'1 1

Figure 2.26 Dither and spectrum shaping.

By moving the addition (Fig. 2.27) of the dither directly before the quantizer,
a high-pass spectrum shaping is obtained for both the error signal and the dither.

Here the following relationships hold

y(n) = [z(n) +dn) - eoln - 1lg

z(n) + d(n) —eg(n — 1) + e(n)
eo(n) = y(n)—[z(n) — eo(n — 1)]

d(n) + e(n)
y(n) = z(n)+dn)—-dn—-1)+e(n)—e(n—1)
ei(n) = dn)—dn-1)+e(n)—eln-1)

with the Z-transforms given by

V(z) = X&) +E@[1-2z1+D)1-27"

Ei(z) = E@@[1-z"'1+DE)[1-271.
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d(n)
x(n) -—Gb—» Q —o y(n)
eg(n)
z-t ] °

Figure 2.27 Modified dither and spectrum shaping.

Apart from the discussed feedback structures which are easy to implement on
a digital signal processor and which lead to high-pass noise shaping, there are
psychoacoustic-based noise shaping methods proposed in the literature [Ger89,
Wan92). These methods use special approximations of the hearing threshold (thres-
hold in quiet, absolute threshold) for the feedback structure 1 — H(z). Figure 2.28a
shows the hearing threshold as a function of frequency. It can be seen that the

a} Threshold in Quiet b) F-weighting Curve
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Figure 2.28 a) Threshold in quiet (—) and inverse F-weighting curve (---). b) F-
weighting curve.

sensitivity of human hearing is high for frequencies between 2 and 6 kHz and
sharply decreases for high and low frequencies. Figure 2.28a also shows an inverse
F-weighting curve which represents an approximation of the threshold in quiet. The
feedback filter should affect the quantization error with the inverse F-weighting
curve. Hence, the noise power in the frequency range with high sensitivity should
be reduced and shifted towards lower and higher frequencies. Figure 2.29a shows
the power density spectrum of the quantization error for two special filters H (z)
[Wan92]. The power density spectrum with the F-weighting is illustrated in Fig.
2.29b. It can be seen that the perceived noise power is reduced by 15 dB for the
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dashed curve. This is equivalent to a 2.5 bit increase in word-length. Gerzon has
given a theoretical limit of 27 dB, which can be achieved by a direct weighting
with the filter characteristic of the threshold in quiet [Ger89).

a) unweigthed b) F-weigthed
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Figure 2.29 Power density spectrum of two filter approximations (filter 1 ---, filter 2

—): a) unweighted, b) F-weighted.

2.4 Number Representation

The different applications in digital signal processing and transmission of audio
signals leads to the question of the type of number representation for digital audio
signals. In this section, basic properties of fixed-point and floating-point number
representation in the context of digital audio signal processing are presented.

2.4.1 Fixed-point Number Representation

In general, an arbitrary real number z can be approximated by a finite summation

w—1
zg =Y b2, (2.128)

=0
where the possible values for b; are 0 and 1.

The fixed-point number representation with a finite number w of binary places

leads to four different interpretations of the number range (see Table 2.1 and Fig.
2.30).
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Table 2.1 Bit location and range of values.

2 Quantization

r type

bit location

l

range of values

signed 2s c. o = —bo + 2?:11 b_;27" -1 <z 1- g~ (w—1)
unsigned 2s ¢. | zg =) 7 b2 0 <xzg< 1-27%
signed int. | 2g = —bu_12"7 4 300020 | —2¥T <zo < 2vTl -
unsigned int. | zg =Y 1 b:2* 0 <zo< 2¥-1
Bit 31 30 29 2 1 0
[jo [ 2-1 I 2-2 [ ETI ] 2-29| 2-30| 2-31 Signed Twos Complement
[ 21 ] 22| 23] - - - | 2-30] 2-31] 2-32] Unsigned Twos Complement

2]

2300 220 . . . [ 22 21 ] 0| signedinteger

L 23t]

230| 229| e e I 22] 21 I 20’ Unsigned Integer

Figure 2.30 Fixed-point formats.

The signed fractional representation (2s complement) is the usual format for
digital audio signals and for algorithms in fixed-point arithmetic. For address and
modulo operation, the unsigned integer is used. Owing to finite word-length w,
overflow occurs as shown in Fig. 2.31. These curves have to be taken into con-
sideration while carrying out operations, especially additions in 2s complement

arithmetic.

Quantization is carried out with techniques as shown in Table 2.2 for rounding
and truncation. The quantization step size is characterized by Q = 2= (=1 and the
operation |z| denotes an integer smaller than z. Figure 2.32 shows the rounding

Table 2.2 Rounding and truncation of 2s complement numbers.

I type lquantiza.tion

error limits

]

2sc. (r) | zo =Q|Q 'z +0.5]

—Q/2

Szo-z< Q2

Bc (t) | 2o =QlQ 'z}

Q@ <zog-z< 0

and truncation curves for 2s complement number representation. The absolute
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X g g

Unsigned Twos Complement

1 2

Unsigned Integer

Figure 2.31 Number range.

error shown in Fig. 2.32 is given by

e=2Q — . (2.129)

Digital audio signals are coded in the 2s complement number representation.
For 2s complement representation, the range of values from —X .0 t0 +X oz i
normalized to the range -1 to +1 and is represented by the weighted finite sum
zg = —bp+b1-0.5+by-0.25+b3-0.125+ -+ + by, - 27(¥~1)_ The variables by to
by —1 are called bits and can take the values 1 or 0. The bit by is called MSB (most
significant bit) and b,,_; is called LSB (least significant bit). For positive numbers,
by is equal to 0 and for negative numbers by equals 1. For a 3 bit quantization (see
Fig. 2.33), a quantized value can be represented by zg = —bo + b, - 0.5+ b, - 0.25.
The smallest quantization step size is 0.25. For a positive number (.75 it follows
that 0.75 = -0+ 1-0.5+ 1-0.25. The binary coding for 0.75 is 011.

Dynamic Range. The dynamic range of a number representation is defined
as the ratio of maximum to minimum number. For fixed-point representation with

TOmaz — (1 - 2—(w—1)) (2130)
TQmin = 27 W7 (2.131)
the dynamic range is given by
. N 1—
DRr = 20log, (QO ”’) = 20log,q (—Q)
ZQmin Q

= 20log,,(2¥~' —1) [dB]. (2.132)
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Figure 2.32 Rounding and truncation curves.

Multiplication and Addition of Fixed-point Numbers. For the multipli-
cation of two fixed-point numbers in the range from -1 to +1, the result is always
lesser than 1. For the addition of two fixed-point numbers, care must be taken for
the result to remain in the range from -1 to +1. An addition of 0.6 + 0.7 = 1.3
must be carried out in the form 0.5(0.6 +0.7) = 0.65. This multiplication with the
factor 0.5 or generally 27¢ is called scaling. An integer in the range from 1 to, for
instance, 8 is chosen for the scaling coeflicient s.

Error Model. The quantization process for fixed-point numbers can be ap-
proximated as an the addition of an error signal e to the signal z (see Fig. 2.34).
The error signal is a random signal with white power density spectrum.

Signal-to-noise Ratio. The signal-to-noise ratio for a fixed-point quantizer
is defined by

2
SNR = 10log;, (g-z-) , (2.133)

[ 4

where o2 is the signal power and o2 is the noise power.
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Figure 2.34 Model of a fixed-point quantizer.

2.4.2 Floating-point Number Representation

The representation of a floating-point number is given by
ro = Mg 25¢ (2.134)

with
0.6 < Mg <1, (2.135)

where M denotes the normalized mantissa and E¢g the exponent. The normalized
standard format (IEEE) is shown in Fig. 2.35 and special cases are given in Table
2.3. The mantissa M is implemented with a word-length of wys bits and is in
fixed-point number representation. The exponent E is implemented with a word-
length of wg bits and is an integer in the range from —2%&—1 +2 {0 2¥5~1 —1. For
an exponent word-length of wg = 8 bits, its range of values lies between -126 and



52 2 Quantization
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Figure 2.35 Floating-point number representation.

Table 2.3 Special cases of floating-point number representation.

| type || exponent | mantissa | value
NAN 255 #0 undefined
infinity 255 0 (—1)® infinity
normal || 1 <e <254 any (—1)*(0.m)2e 127
zero 0 0 (=1)*-0

+127. The range of values of the mantissa lies between 0.5 and 1. This is denoted
as the normalized mantissa and is responsible for a unique representation of a num-
ber. For a fixed-point number in the range between 0.5 and 1, it follows that the
exponent of the floating-point number representation is £ = 0. For representing a
fixed-point number in the range between 0.25 and 0.5 in floating-point represen-
tation, the range of values of the normalized mantissa M lies between 0.5 and 1,
and for the exponent it follows £ = —1. As an example, for a fixed-point number
0.75 the floating-point number 0.75 - 2° results. The fixed-point number 0.375 is
not represented as the floating-point number 0.375-2°. With the normalized man-
tissa, the floating-point number is expressed as 0.75-27!. Owing to normalization,
the ambiguity of floating-point number representation is avoided. Numbers > 1
can be represented. For example, 1.5 becomes 0.75 - 2! in floating-point number
representation.

Figure 2.36 shows the rounding and truncations curves for floating-point re-
presentation and the absolute error e = zg — z. The curves for floating-point
quantization show that for small amplitudes small quantization steps sizes occur.
In contrast to fixed-point representation the absolute error is dependent on the
input signal.

In the interval
obe < g < 9Bet! (2.136)

the quantization step is given by

Q¢ = 2~ (wn—1oFs (2.137)
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Figure 2.36 Rounding and truncation curves for floating-point representation.

For the relative error
:EQ — T
ey = > (2.138)

of the floating-point representation, a constant upper limit can be stated as

le,| < 27 (w1, (2.139)

Dynamic Range. With the maximum and minimum numbers given by

TQmaz = (1 —27(ws—DyoEemas (2.140)
Tomin = 0.52Fcmin (2.141)
and
EGmax = sz_l_l (2.142)
Egmin = —2¥¢7'1 42 (2.143)
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the dynamic range for floating-point representation is given by
(1- 2—(wM—1))2EG...u
0.52Ecmin )
= 20log;y(1 — 2~ (wa—1))2Fcmaz —Eamin+1

= 20log, (1 — 2~ (wm—1))92"%=2  14B], (2.144)

DRg = 2010g10(

Multiplication and Addition of Floating-point Numbers. For multipli-
cations with floating-point numbers, the exponents of both numbers zg; = M, 25
and Tgy = M22%2 are added and the mantissas are multiplied. The resulting
exponent Fg = FE; + E; is adjusted so that My = M; M, lies in the interval
0.5 < Mg < 1. For additions the smaller number is denormalized to get the same
exponent. Then both mantissa are added and the result is normalized.

Error Model. With the definition of the relative error e, = Ez_—”” the quan-
tized signal can be written as

zog=z(l+e)=z+z e (2.145)

Floating-point quantization can be modeled as an additive error signal e = z - e,
to the signal z (see Fig. 2.37).

X Q VXQ

X Tﬁ— X =X+x-ep

er

Figure 2.37 Model of a floating-point quantizer.

Signal-to-noise Ratio. Under the assumption that the relative error is in-
dependent of the input z, the noise power of the floating-point quantizer can be

written as
o2 =¢k.02 . (2.146)

(%)
= 1oiog (57 )
(

%) . (2.147)

r

For the signal-to-noise-ratio, we can derive

SNR = 1010g10

l’bqto | qu

10 log; o

Q



2.4 Number Representation 5%

Equation (2.147) shows that the signal-to-noise-ratio is independent of the level
of the input. It is only dependent on the noise power agr which, in turn, is only

dependent on the word-length wpys of the mantissa of the floating-point represen-
tation.

2.4.3 Effects on Format Conversion and Algorithms

First, a comparison of signal-to-noise ratio is made for fixed-point and floating-
point number representation. Figure 2.38 shows the signal-to-noise ratio as a func-
tion of input level for both number representations. The fixed-point word-length
is w = 16 bits. The word-length of the mantissa in floating-point representation
is also wps = 16 bits whereas that of the exponent is wg = 4 bits. The signal-to-

wy=16 wp=4
120 '

100 -

Floating-point

80

T
= 601 ' Fi)f(’:g-‘pbinl
Z .
&

40 b

20t

0 e - . : :
-120 -100 -80 -60 -40 -20 0

X [dB] —
Figure 2.38 Signal-to-noise ratio for an input level.

noise ratio for floating-point representation shows that it is independent of input
level and varies as a saw-tooth curve in a 6 dB grid. If the input level is so low
that a normalization of the mantissa due to finite number representation is not
possible, then the signal-to-noise ratio is comparable to fixed-point representation.
While using the full range, both fixed-point and floating-point result in the same
signal-to-noise ratio. It can be noticed that the signal-to-noise ratio for fixed-point
representation depends on the input level. This signal-to-noise ratio in the digital
domain is an exact image of the level-dependent signal-to-noise ratio of an analog
signal in the analog domain. A floating-point representation cannot improve this
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signal-to-noise ratio. Rather, the floating-point curve is vertically shifted down-
wards to the value of signal-to-noise ratio of an analog signal.

AD/DA Conversion. Before processing, storing and transmission of audio
signals, the analog audio signal is converted into a digital signal. The precision of
this conversion depends on the word-length w of the AD converter. The resulting
signal-to-noise ratio is 6w dB for uniform PDF inputs. The signal-to-noise ratio
in the analog domain depends on the level. This linear dependence of signal-to-
noise ratio on level is preserved after AD conversion with subsequent fixed-point
representation.

Digital Audio Formats. The basis for established digital audio transmission
formats is provided in the previous section on AD/DA conversion. The digital
two-channel AES/EBU-interface [AES92] and 56-channel MADI-interface [AES91]
both operate with fixed-point representation with a word-length of, at the most,
24 bits per channel.

Storage and Transmission. Besides the established storage media like com-
pact disc and DAT which were exclusively developed for audio application, there
are storage systems like hard discs in computers. These are based on magnetic or
magneto-optic principles. The systems operate with fixed-point number represen-
tation. With regard to the transmission of digital audio signals for band-limited
transmission channels like satellite broadcasting (Digital Satellite Radio, DSR) or
terrestrial broadcasting, it is necessary to reduce bit rates. For this, a conversion of
a block of linearly coded samples is carried out in a so-called block floating-point
representation in DSR. In the context of DAB, a data reduction of linear coded
samples is carried out based on psychoacoustic criteria.

Equalizers. While implementing equalizers with recursive digital filters, the
signal-to-noise ratio depends on the choice of the recursive filter structure. By a
suitable choice of a filter structure and methods to spectrally shape the quanti-
zation errors, optimal signal-to-noise ratios are obtained for a given word-length.
The signal-to-noise ratio for fixed-point representation depends on the word-length
and for floating-point representation on the word-length of the mantissa. For filter
implementations with fixed-point arithmetic, boost filters have to be implemented
with a scaling within the filter algorithm. The properties of floating-point represen-
tation take care of automatic scaling in boost filters. If an insert I/O in fixed-point
representation follows a boost filter in floating-point representation then the same
scaling as in fixed-point arithmetics has to be done.

Dynamic Range Control. Dynamic range control is performed by a simple
multiplicative weighting of the input signal with a control factor. The latter follows
from calculating the peak and RMS value (root mean square) of the input signal.
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The number representation of the signal has no influence on the properties of the
algorithm. Owing to the normalized mantissa in floating-point representation some
simplifications are produced while determining the control factor.

Mixing/Summation. While mixing signals to a stereo image, only multiplica-
tions and additions occur. Under the assumption of incoherent signals, an overload
reserve can be estimated. This implies a reserve of 20/30 dB for 48/96 sources. For
fixed-point representation the overload reserve is provided by a number of overflow
bits in the accumulator of a DSP (Digital Signal Processor). The properties of au-
tomatic scaling in floating-point arithmetic provide for overload reserves. For both
number representations, the summation signal must be matched with the number
representation of the output. While dealing with AES/EBU outputs or MADI out-
puts, both number representations are adjusted to fixed-point format. Similarly,
within heterogeneous system solutions, it is logical to make heterogeneous use of
both number representations though corresponding number representations have
to be converted.

Since the signal-to-noise ratio in fixed-point representation depends on the
input level, a conversion from fixed-point to floating-point representation does not
lead to a change of signal-to-noise ratio, i.e. the conversion does not improve the
signal-to-noise ratio. Further signal processing with floating-point or fixed-point
arithmetic does not alter the signal-to-noise ratio as long as the algorithms are
chosen and programmed accordingly. Reconversion from floating-point to fixed-
point representation again leads to a level-dependent signal-to-noise ratio.

As a consequence, for two-channel DSP systems which operate with AES/EBU
or with analog inputs and outputs, and which are used for equalization, dynamic
range control, room simulation etc., the above-mentioned holds. These conclusions
are also valid for digital mixing consoles for which digital inputs from AD conver-
ters or from multitrack machines are represented in fixed-point format (AES JEBU
or MADI). The number representation for inserts and auxiliaries is specific to a sy-
stem. Digital AES/EBU (or MADI) inputs and outputs are realized in fixed-point
number representation.



Chapter 3

AD /DA Conversion

The conversion of a continuous-time function z(t) (voltage, current) into a sequence
of numbers z(n) is called analog-to-digital conversion (AD conversion). The re-
verse process is known as digital-to-analog conversion (DA conversion). The time-
sampling of a function z(¢) is described by Shannon’s Sampling Theorem. It states
that a continuous-time signal with bandwidth fp can be sampled with a samp-
ling rate fs > 2fp without changing the content of information in the signal.
The original analog signal is reconstructed by low-pass filtering with bandwidth
fB. Besides time-sampling, the nonlinear procedure of digitizing the continuous-
valued amplitude (quantization) of the sampled signal occurs. In the first section,
basic concepts of Nyquist sampling, oversampling and delta-sigma modulation are
presented. In the second and third sections, principles of AD and DA converter
circuits are discussed.

3.1 Methods

3.1.1 Nyquist Sampling

The sampling of a signal with sampling rate fs > 2fp is called Nyquist sampling.
The schematic diagram in Fig. 3.1 shows the procedure. The band-limiting of the
input at fs/2 is carried out by an analog low-pass filter (Fig. 3.1a). The following
sample-and-hold circuit samples the band-limited input at a sampling rate fg.
The constant amplitude of the time function over the sampling period T's = 1/ fs
is converted to a number sequence z(n) by a quantizer (Fig. 3.1b). This number

59
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sequence is fed to a digital signal processor (DSP) which performs signal processing
algorithms. The output sequence y(n) is delivered to a DA converter which gives a
staircase as its output (Fig.3.1c). Following this, a low-pass filter gives the analog
output y(t) (Fig. 3.1d). Figure 3.2 demonstrates each step of AD/DA conversion

Sampling Rate
fs
el ﬁ) I 2)
nalog ’
X(t) o— Low-pass [~° o—/ro Quantizer 9— x(n)

x(t) Sample/HoId
‘lﬂ tl.

DA- )2) Analog é vit)

Converter Low-pass
I | y(n) [ I I
—

Figure 3.1 Schematic diagram of Nyquist sampling.

x(n) DS y(n

A

in the frequency domain. The individual spectra in Fig. 3.2a...d correspond to the
outputs a...d in Fig. 3.1.

After band-limiting (Fig. 3.2a) and sampling, a periodic spectrum with period
fs of the sampled signal is obtained as in Fig. 3.2b. Assuming that consecutive
quantization errors e(n) are statistically independent of each other, the noise power
has a spectral uniform distribution in the frequency domain 0 < f < fg. The
output of the DA converter still has a periodic spectrum. However, this is weighted
with the sinc-function (smc_sm(z) [Fli91, Gab87] of the sample-and-hold circuit
(Fig. 3.2c). The zeros of the sinc-function are at multiples of the sampling rate fs.
In order to reconstruct the output (Fig. 3.2d), the image spectra are eliminated
by an analog low-pass of sufficient stop-band attenuation.

The problems of Nyquist sampling lie in the steep band-limiting filter charac-
teristic (anti-aliasing filter) of the analog input filter and the analog reconstruction
filter (anti-imaging filter) of similar filter characteristic and sufficient stop-band
attenuation. Further, sinc-distortion due to the sample-and-hold circuit needs to
be compensated for.
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Figure 3.2 Nyquist sampling - interpretation in the frequency domain.

3.1.2 Oversampling

In order to increase the resolution of the conversion process and reduce the com-
plexity of the analog filters, oversampling techniques are employed. Owing to the
spectral uniform distribution of quantization error between 0 and fs (see Fig.
3.3a), it is possible to reduce the power spectral density in the pass-band through
oversampling by a factor L, i.e. with the new sampling rate L fg (see Fig. 3.3b).
For identical quantization step size ¢}, the shaded areas (quantization error power
02) in Fig. 3.3a and Fig. 3.3b are equal. The increase in the signal-to-noise ratio
is also noticed from Fig. 3.3.

It follows that in the pass-band at a sampling rate of fg = 2fp the power
spectral density given by

Q2

See(f) = 12f8

(3.1)
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Figure 3.3 Influence of oversampling on power spectral density of quantization error.

leads to the noise power

/e Q2
N% =0% =2 See(f)df = 75 (3.2)
0

Owing to oversampling by a factor of L, a reduction of the power spectral

density given by
Qz

is obtained (see Fig. 3.3). The signal-to-noise ratio (with Pr = +/3) owing to
oversampling can be expressed as

SNR = 6.02 - w + 10log,o(L)  [dB]. (3.4)

Figure 3.4a shows a schematic diagram of an oversampling AD converter.
Owing to oversampling, the analog band-limiting low-pass filter can have a wi-
der transition bandwidth as shown in Fig. 3.4b. The quantization error power is
distributed between 0 and the sampling rate L fs. To reduce the sampling rate, it
is necessary to limit the bandwidth with a digital low-pass filter (see Fig. 3.4c).
After this, the sampling rate is reduced by a factor L (see Fig. 3.4d) by taking
every Lth output sample of the digital low-pass filter [Vai93, Fli94].

Figure 3.5a shows the schematic diagram of an oversampling DA converter. The
sampling rate is first increased by a factor of L. For this, L — 1 zeros are introduced
between two consecutive input values [Vai93, Fli94]. The following digital filter
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Figure 3.4 Oversampling AD converter and sampling rate reduction.

eliminates all image spectra (Fig. 3.5b) except the baseband spectrum and spectra
at multiples of Lfs (Fig. 3.5¢). It interpolates L — 1 samples between two input
samples. The w bit DA converter operates at a sampling rate L fs. Its output is fed
to an analog reconstruction filter which eliminates the image spectra at multiples
of Lfs.

3.1.3 Delta-sigma Modulation

Delta-sigma modulation using oversampling is a conversion strategy derived from
delta modulation. In delta modulation (Fig. 3.6a}, the difference between the input
z(t) and signal z, () is converted into a 1 bit signal y(n) at a very high samp-
ling rate Lfs. The sampling rate is higher than the necessary Nyquist rate fs.
The quantized signal y(n) gives the signal z;(¢) via an analog integrator. The
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Figure 3.5 Oversampling and DA conversion.

demodulator consists of an integrator and a reconstruction low-pass filter. The
corresponding signals are shown in Fig. 3.7.

The extension to delta-sigma modulation [Ino63] consists of shifting the inte-
grator from the demodulator to the input of the modulator (see Fig. 3.6b). With
this, it is possible to combine the two integrators as a single integrator after addi-
tion (see Fig. 3.8a). The corresponding signals are shown in Fig. 3.9.

A time-discrete model of the delta-sigma modulator is given in Fig. 3.8b. The
Z-transform of the output signal y(n) is given by

Y(z) = %X(z)+%mE(z)
~ X(z)+ = E(z)
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Figure 3.7 Signals in delta modulation.

For a large gain factor of the system H(z), the input signal will not be affected.
In contrast, the quantization error is shaped by the filter term 1/[(1 + H(2)].

The schematic diagrams of delta-sigma AD/DA conversion are shown in Figs.
3.10 and 3.11. For delta-sigma AD converters, a digital low-pass filter and a down-
sampler with factor I are used to reduce the sampling rate Lfg down to fs. The
1 bit input to the digital low-pass filter leads to a w bit output z(n) at a sampling
rate fg. The delta-sigma DA converter consists of an upsampler with factor L, a
digital low-pass filter to eliminate the mirror spectra and a delta-sigma modulator
followed by an analog reconstruction low-pass filter. In order to illustrate noise
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Figure 3.8 Delta-sigma modulation and time-discrete model.

shaping in delta-sigma modulation in detail, first- and second-order systems as
well as multistage techniques are investigated in the following sections.
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Figure 3.9 Signals in delta-sigma modulation.

First-order Delta-sigma Modulator

A time-discrete model of a first-order delta-sigma modulator is shown in Fig. 3.12.
The difference equation for the output y(n) is given by
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Figure 3.10 Oversampling delta-sigma AD converter.
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Figure 3.11 Oversampling delta-sigma DA converter.
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Figure 3.12 Time-discrete model of a first-order delta-sigma modulator.

y(n) =z(n—1) +e(n) —e(n — 1). (3.6)
The corresponding Z-transform leads to

Y(z)=27'X(2)+ E(z)(1-271). (3.7)
Hg(z)

The power density spectrum of the error signal e;(n) = e(n) —e(n — 1) is
Serer (61%) = Sealel®) [1 - e’
; 0
= See(eJQ)4sin2(§-), (3.8)

where S,.(e’®*) denotes the power density spectrum of the quantization error e(n).

The error power in the frequency band [—fg, fg], with S..(f) = Tﬁ?, can be
written as
4] f
Ny = 5..(f)2 / 4 sin® (7 —-)df (3.9)
0 Lfs
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With fg = 2fp we get

. Qa2 /1\?
N2 =="__[2} . .
B7 123 \L (3.11)

Second-order Delta-sigma Modulator

For the second-order delta-sigma modulator [Can85], shown in Fig. 3.13, the

Quantizer

_______

X(z) +—{+ ) 21

Figure 3.13 Time-discrete model of a second-order delta-sigma modulator.

difference equation is expressed as
yn)=z(n—-1)+e(n) —2e(n—-1)+e(n-2) (3.12)
and the Z-transform is given by

Y(2) =27'X(2)+ E(2) (1 =227  + 27%). (3.13)

- -

He(z)=(1-z-1)?

The power density spectrum of the error signal e;(n) = e(n) —2e(n—1) +e(n —2)
can be written as

86181(610) = See(ejﬂ) ‘1 - e—jQ|4
= S, (e"[4 sin'z(%)]2
= See(e’™)4[1 - cos()]?. (3.14)
The error power in the frequency band [—fg, fB] is given by
fB
Ni = Se.(f)2 4[1 — cos(Q)]*df (3.15)
0
Q2 it 215 5
125 \Ifs (3.16)

and with fg¢ = 2fp we obtain

2 4 5
A
M=22 (1) 817
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Multistage Delta-sigma Modulator

A multistage delta-sigma modulator (MASH, [Mat87]) is shown in Fig. 3.14.

Eq{2)

Y.(2)
X(z) n vl Q| ,@—c Y(2)
) z! J
z1
-Ei(2) -
s
E,(2)
Y,
i Q 121 @
/ > J
z1 et
Byl A
T+
3{2)
Y, (z)

n Q| ——{(1:21)?
) - J
2

Figure 3.14 Time-discrete model of a multistage delta-sigma modulator.

The Z-transforms of the output signal y; 3(n) are given by

Vi(z) = X(2)+(1-2"HYE(2) (3.18)
Ya(z) = —Ei(2)+ (1 -2"YEy(2) (3.19)
Ya(z) = —FEy(2)+ (1 -2z Y)Es(2). (3.20)

The Z-transform of the output results by addition and filtering in

Y(z) = Yi(2)+ (1 -z H)Ya(2) + (1 - 271)*Ya(2)
= X(2)+ (1 -2z"D)E(2) - (1-27")Ey(2)
+(1 =27 Ea(2) = (1= 27 ) Ea(2) + (1~ 27 ') Ea(2)
= X(2)+ (1 -2z E;(2). (3.21)
e

Hg(z)
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The error power in the frequency band [—fg, f5]

2.6 7
o, Q7 (2fp
Np = 137 (Lfs) (3.22)
with f¢ = 2fp gives the following total noise power
2 .6 7
A
%=L (1) .

The error transfer functions in Fig. 3.15 show the noise shaping for three types
of delta-sigma modulations as discussed before. The error power is shifted towards
higher frequencies.

20
-20-/’, K=l ---
40f K=2 ...

60/ K=3 -.-- 1

IH(f/f5) {[dB] —

-100 F

-120F

-140 T S P e e
0 005 01 015 02 025 03 035 04 045 05

fILfg —

Figure 3.15 Hg(z) = (1 — z~")* with K =1,2,3.

The improvement of signal-to-noise ratio by pure oversampling and delta-sigma
modulation (first-, second- and third-order) is shown in Fig. 3.16.

Higher-order Delta-sigma Modulator

A widening of the stop-band for the high-pass transfer function of the quantization
error is achieved with higher-order delta-sigma modulation [Cha90]. Besides the
zeros at z = 1, additional zeros are placed on the unit circle. Also, poles are
integrated into the transfer function. A time-discrete model of a higher-order delta-
sigma modulator is shown in Fig. 3.17.
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Figure 3.16 Improvement of signal-to-noise ratio as a function of oversampling and noise
shaping (L = 2%).
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Figure 3.17 Higher-order delta-sigma modulator.

The transfer function in Fig. 3.17 can be written as

_ _ 2
A0+A11—:zjz—l_'r+z42 (T%r) + ...

1 - B2l — By (r_‘—ir)2+
Aoz = DN + A (z =DV 14 4+ Ay
(z—=1)N = By(z—-1)N-1 — ... - By
TN Az — 1N
(z—1)N =N Bi(z—-1)N-i

H(z) =

(3.24)
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The Z-transform of the output is given by

Y (2) %”’2—2) (z)+H;H(Z)E(z) (3.25)
= Hy(2)X(2) + Hu(Z)E(2). (3.26)

The transfer function for the input is

N N—i
o Ai(z -1V
Hy(z) = = Lizo Ailz , ) = y (3.27)
(z =N = 3050 Bilz - DV 4 3100 Ai(z — DV
and the transfer function for the error signal is given by
(z=1)N =3V Bi(z — )NV~

(z=1N =N Bi(z = )N-t + TN | Ai(z — 1)V

(3.28)

HE(Z) =

For Butterworth or Chebychev filter designs, the frequency responses as shown
in 3.18 are obtained for the error transfer function. As a comparison, the frequency
responses of first-, second- and third-order delta-sigma modulation are shown. The
widening of the stop-band for Butterworth and Chebychev filters can be observed
from Fig. 3.19.

20

B LTt
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20F
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60 H|!

IH(f/fg )l [dB] —
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flLEg —

Figure 3.18 Comparison of different transfer functions of error signal.

Decimation Filter

The implementation of decimation filters for AD conversion and interpolation fil-
ters for DA conversion are performed with multirate systems [F1i94]. The necessary
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Figure 3.19 Transfer function of the error signal in stop-band.

downsampler and upsampler are simple systems. For the former, every nth sample
is taken out of the input sequence. For the latter, (n—1) zeros are inserted between
two input samples. For decimation, band-limiting is performed by H(z) followed
by sampling rate reduction by a factor L. This procedure can be implemented
in stages (see Fig. 3.20). The use of easy-to-implement filters structures at high

X(n) o H(z) - L o y(m)

Lfg Lfg Is

X(n) o——+ H, (2) s |Ls H,(z) L2
Lig Lfg Lafg Lafs

y(m)
fs

Figure 3.20 Several stages for sampling rate reduction.

sampling rates, like comb filters with transfer function

H](Z)

_llmz‘L
- L1-—21

(3.29)

(shown in Fig. 3.21), allows simple implementation needing only delay systems
and additions. In order to increase the stop-band attenuation, a series of comb
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filters is used so that

H (2)

I

11—~
[51_52——1] (3.30)

is obtained.

y(n)

Figure 3.21 Signal flow diagram of a comb filter.

Besides additions at high sampling rates, complexity can be reduced further.
Owing to sampling rate reduction by a factor of L, the numerator (1 — z=%) can
be moved so that it is placed after the downsampler (see Fig. 3.22). For a series of
comb filters, the structure in Fig. 3.23 results. M simple recursive accumulators
have to be performed at the high sampling rate Lfs. After this, downsampling
by a factor L is carried out. The M nonrecursive systems are calculated with the
output sampling rate fg.

-7L
x(n) o 1 z 1 o y(m)
Lfg "2 f
x(n) O—D% “— 1-z1 o y(m)
Lfg Lfg fs f

Figure 3.22 Comb filter for sampling rate reduction.

1 ——= M 1 ——— M
X(n) ol ——L o1 i 1=z Ll 121 o y(m)
Lfg 1-2 1227 g fs fs

Figure 3.23 Series of comb filters for sampling rate reduction.

Figure 3.24a shows the frequency responses of a series of comb filters (L = 16).
Figure 3.24b shows the resulting frequency response for the quantization error of
a third-order delta-sigma modulator connected in series with a comb filter H(z).
The system delay owing to filtering and sampling rate reduction is given by

N -1 1
tp = ——

I (3.31)
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Figure 3.24 a) Transfer function HYY (2) = [Tlé- —_r] with M =1...4. b) Third-

order delta-sigma modulation and in series with H7 (z).

Example: Delay time of conversio

1. Nyquist conversion
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2. Delta-sigma modulation with
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single-stage downsampling
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N = 4096

tp = 665 pus

two-stage downsampling

L = 64
fs = 48 kHz
Ly = 16
Ly = 4
N = 61
Ny = 255
tp, = 976 pus

tp, = 0662 pus
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3.2 AD Converters

The choice of an AD converter for a certain application is influenced by a number
of factors. It mainly depends on the necessary resolution for a given conversion
time. Both of these depend upon each other and are decisively influenced by the
architecture of the AD converter. For this reason, the specifications of an AD
converter are first discussed. This is followed by circuit principles which influence
the mutual dependence of resolution and conversion time.

3.2.1 Specifications

In the following, the most important specifications for AD conversion are presen-
ted.

Resolution. The resolution for a given word-length w of an AD converter
determines the smallest amplitude

Tmin = Q = Tmaz 2—(1‘}—1)7 (332)

which is equal to the quantization step Q.

Conversion Time. The minimum sampling period T's = 1/fs between two
samples is called conversion time.

Sample-and-hold Circuit. Before quantization, the time-continuous func-
tion is sampled with the help of a sample-and-hold circuit, as shown in Fig. 3.25.
The sampling period T is divided into sampling time tg in which the output vol-
tage U, follows the input voltage Ui, and hold-time ¢z. During the hold-time the
output voltage U, is constant and is converted into a binary word by quantization.

Aperture Delay. The time ¢4 elapsed between start of hold and actual hold
mode (see Fig. 3.25) is called aperture delay.

Aperture Jitter. The variation of aperture delay from sample to sample
is called aperture jitter t4ps. The influence of aperture jitter limits the useful
bandwidth of the sampled signal. This is because at high frequency a deterioration
of the signal-to-noise ratio occurs. Assuming a Gaussian PDF aperture jitter, the
signal-to-noise ratio owing to aperture jitter as a function of frequency f can be
written as

SNR; = —20log;o (27 ftans) [dB]. (3.33)

Offset Error and Gain Error. The offset and gain errors of an AD converter
are shown in Fig. 3.26. The offset error results in a horizontal displacement of the
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a) SH

o Ty

Figure 3.25 a) Sample-and-hold circuit. b) Input and output with clock signal.
(ts=sampling time, t y=hold-time, ¢4 p=aperture delay).

Offset Error N Gain Error
’I
11 111 ——
¥
110 110 ’AJ
)
7/
210 8 101 VrJ
3 o P
(S| O 100 IJ
o - ’J/
2o aon 23
=1 3 4
Oo O o010 J
001 001
000 000 34— =
X X
Input Voltage max input Voltage max

Figure 3.26 Offset error and gain error.

real curve compared with the dashed ideal curve of an AD converter. The gain
error is expressed as the deviation from the ideal gradient of the curve.

Differential Nonlinearity. The differential nonlinearity

Az/Q

DNL =
A.IQ

1 [LSB] (3.34)

describes the error of the step size of a certain code word in LSB units. For ideal
quantization, the increase Az of the input voltage up to the next output code z¢ is
equal to the quantization step ¢ (see Fig. 3.27). The difference of two consecutive
output codes is denoted as Azg. When the output code changes from 010 to 011,
the step size is 1.5 LSB and therefore the differential nonlinearity DNL=0.5 LSB.
The step size between the codes 011 and 101 is 0 LSB and the code 200 is missing.
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The differential nonlinearity is DNL=-1 LSB.

111
110
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FL\ I‘L

-« DNL=0.5LSB
-« DNL=0LSB

Input Voltage

Figure 3.27 Differential Nonlinearity.

Integral Nonlinearity. The integral nonlinearity (INL) describes the error
between the quantized and the ideal continuous value. This error is given in LSB
units. It arises owing to the accumulated error of the step size. This (see Fig. 3.28)
changes itself continuously from one output code to another.

Output Code

X max

Input Voltage

Figure 3.28 Integral nonlinearity.

Monotonicity. The progressive increase in quantizer output code for a conti-
nuously increasing input voltage and progressive decrease in quantizer output code
for a continuously decreasing input voltage is called monotonicity. An example of
non-monotonic behavior is shown in Fig. 3.29 where one output code does not
occur.

Total Harmonic Distortion. The harmonic distortion is calculated for an
AD converter at full range with a sinusoid (X, = 0 dB) of given frequency. The
selective measurement of harmonics of the second- to the ninth-order are used to
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Output Code
2
N

Input Voltage

Figure 3.29 Monotonicity.

compute
THD = 20log,| Y [10-X-/20]2  [dB] (3.35)
n=2
= | Y _[100-X=/20)]2.. 100% (3.36)
n=2

where X,, are the harmonics in dB.

THD+N: Total Harmonic Distortion plus Noise. For the calculation of
harmonic distortion plus noise, the test signal is suppressed by a stop-band filter.
The measurement of harmonic distortion plus noise is performed by measuring
the remaining broad-band noise signal which consists of integral and differential
nonlinearity, missing codes, aperture jitter, analog noise and quantization error.

3.2.2 Parallel Converter

Parallel Converter. A direct method for AD conversion is called parallel con-
version (flash converter). In parallel converters, the output voltage of the sample-
and-hold circuit is compared with a reference voltage Ur with the help of 2% — 1
comparators (see Fig. 3.30). The sample-and-hold circuit is controlled with samp-
ling rate fg so that during the hold-time {4, a constant voltage at the output of
the sample-and-hold circuit is available. The outputs of the comparators are fed
at sampling clock rate into a 2% — 1 bit register and converted by a coding logic
to a w bit data word. This is fed at sampling clock rate to an output register. The
sampling rates that can be achieved lie between 1 and 500 MHz for a resolution
of up to 10 bits. Owing to the large number of comparators, the technique is not
feasible for high precision.
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Figure 3.30 Parallel converter.

Half-flash Converter. In half-flash AD converters (Fig. 3.31), two m bit
parallel converters are used in order to convert two different ranges. The first m
bit AD converter gives a digital output word which is converted into an analog
voltage using an m bit DA converter. This voltage is now subtracted from the
output voltage of the sample-and-hold circuit. The difference voltage is digitized
with a second m bit AD converter. The rough and fine quantization leads to a w
bit data word with a subsequent logic.

l I I —0 Sampli?é; Rate

Uy

S/H

|

x

m bit
ADC

m bit
ADC

L.ogic

Qutput
Register

bit

"

m bit
DAC

|

Figure 3.31 Half-flash AD converter.

Subranging Converter. A combination of direct conversion and sequential
procedure is carried out for subranging AD converters (see Fig. 3.32). In contrast
to the half-flash converter, only one parallel converter is required. The switches S
and S, take the values of 0 and 1. First, the output voltage of a sample-and-hold
circuit and then the difference voltage amplified by a factor 2™ is fed to an m bit
AD converter. The difference voltage is formed with the help of the output voltage
of an m bit DA converter and the output voltage of the sample-and-hold circuit.
The conversion rates lie between 100 kHz and 40 MHz where a resolution of up to
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16 bits 1s achieved.
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Figure 3.32 Subranging AD converter.

3.2.3 Successive Approximation

AD converters with successive approximation consist of the functional mmodules
shown in Fig. 3.33. The analog voltage is converted into a w bit word within w
cycles. The converter consists of a comparator, a w bit DA converter and logic for
controlling the successive approximation.

- Sampling Rate

fs

Logic

) =

. 52 | whit
( Successive 3B
SH _D Approximation S

Uy l - Opg
9 w bit
- DAC

Figure 3.33 AD converter with successive approximation.

The conversion process is explained with the help of Fig. 3.34. First, it is
checked whether a positive or negative voltage is present at the comparator. If it
is positive, the output +0.5Ug is fed to a DA converter to check whether the output
voltage of the comparator is greater or less than +0.5Up. After that, the output
of (+0.5 £ 0.25)Up is fed to the DA comparator. The output of the comparator is
then evaluated. This procedure is performed w times and leads to a w bit word.

For a resolution of 12 bits, sampling rates of up to 1 MHz can be achieved.
Higher resolutions of more than 16 bits are possible at a lower sampling rates.
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+05Ug |—

Figure 3.34 Successive approximation.

3.2.4 Counter Methods

In contrast to the conversion techniques of the previous sections for high conversion
rates, the following techniques are used for sampling rates smaller than 50 kHz.

Forward-backward Counter. A technique which operates like successive
approximation is the forward-backward counter shown in Fig. 3.35. A logic controls
a clocked forward-backward counter whose output data word provides an analog
output voltage via a w bit DA converter. The difference signal between this voltage
and the output voltage of the sample-and-hold circuit determines the direction of
counting. The counter stops when the corresponding output voltage of the DA
converter is equal to the output voltage of the sample-and-hold circuit.

Sampling Rate
fs
| Logic
FIB- J 5 & |wbit
o— SH Counte# % '%-; L/'°
U1l O

9 w bit
- DAC

Figure 3.35 AD converter with forward-backward counter.

Single-slope Counter. The single-slope AD converter shown in Fig. 3.36
compares the output voltage of the sample-and-hold circuit with a voltage of a
sawtooth generator. The sawtooth generator is started every sampling period. As
long as the input voltage is greater than the sawtooth voltage, the clock impulses
are counted. The counter value corresponds to the digital value of the input voltage.

Dual-slope Converter. A dual-slope AD converter is shown in Fig. 3.37. In
the first phase in which a switch S is closed for a counter period t,, the output
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Figure 3.36 Single-slope AD converter.
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Figure 3.37 Dual-slope AD converter.

voltage of the sample-and-hold circuit is fed to an integrator of time-constant 7.
During the second phase, the switch S; is closed and the switch S is opened. The
reference voltage is switched to the integrator and the time to reach a threshold is
determined by counting the clock impulses by a counter. Figure 3.37 demonstrates
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this for three different voltages U;. The slope during time ¢, is proportional to
the output voltage Us of the sample-and-hold circuit whereas the slope is constant
when the reference voltage Up is connected to the integrator. The ratio U, /Ug =
t2/t1 leads to the digital output word.

3.2.5 Delta-sigma AD Converter

The delta-sigma AD converter in Fig. 3.38 requires no sample-and-hold circuit
owing to its high conversion rate. The analog band-limiting low-pass filter and
the digital low-pass filter for downsampling to a sampling rate fg are usually on
the same circuit. The linear phase nonrecursive digital low-pass filter in Fig. 3.38
has a 1 bit input signal and leads to a w bit output signal owing to the NV filter
coeflicients hg, by, ..., hn—1 which are implemented with a word-length of w bits.
The output signal of the filter results from the summation of the filter coefficients
of the nonrecursive low-pass filter with either 0 or 1. The downsampling by a
factor L is performed by taking every Lth sample out of the filter and writing to
the output register. In order to reduce the number of operations the filtering and
downsampling can be performed only every Lth input sample.

Sampling Rate Sampling Rate
Lfs fg
l ¥
\ 1 bit L = O w bit
Analog Delta-Sigma| Digital =R
Low-pass | | Modulator Low-pass| | ¥t "l 3% -
U4 l og
1 bit
o—— %%_ ............. —
ho yhs yho \}M Dz hN-t
» " G S— »]

w bit

Figure 3.38 Delta-sigma AD converter.

The applications of delta-sigma AD converters are found at sampling rates of
up to 100 kHz with a resolution of up to 24 bits.
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3.3 DA Converters

Circuit principles for DA converters are mainly based on direct conversion techni-
ques of the input code. Therefore, the achievable sampling rates are accordingly
high.

3.3.1 Specifications

The definitions of resolution, total harmonic distortion (THD) and total harmonic
distortion plus noise (THD+N) correspond to those for AD converters. Further
specifications are discussed in the following.

Settling Time. The time interval between transferring a binary word and
achieving the analog output value within a specific error range is called the sett-
ling time tgp. The settling time determines the maximum conversion frequency
fs.... = 1/tsg. Within this time, glitches between consecutive amplitude values
can occur (see Fig. 3.39). With the help of a sample-and-hold circuit (deglitcher),
the output voltage of the DA converter is sampled after the settling time and held.

fs
[+]
) Uy Ise
> | ]
w bit !
o—f—| DAC » SH |—o ~
1U1 lUZ ! + : >t
bt - Tg
to1 "
! 1

Figure 3.39 Settling time and sample-and-hold function.

Offset and Gain Error. The offset and gain errors of a DA converter are
shown in Fig. 3.40.

Differential Nonlinearity. The differential nonlinearity for DA converters
describes the step size error of a code word in LSB. For ideal quantization, the
increase Az of the output voltage until the next code word corresponding to the
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Figure 3.40 Offset and gain error.

output voltage is equal to the quantization step size @ (see Fig. 3.41). The diffe-
rence of two consecutive input codes is termed Azg. Differential nonlinearity is
given by
A

Q4 em (3.37)
A:EQ
For the code step from 001 to 010 as shown in Fig. 3.41, the step size is 1.5 LSB,
and therefore the differential nonlinearity DNL = 0.5 LSB. The step size between
the codes 010 and 100 is 0.75 LSB and it follows for DNL = -0.25. The step size
for the code change from 011 to 100 is 0 LSB (DNL = -1 LSB).

DNL =

Xmax 7
i
:..7(..
I
° opl
(=]
8 resedan
2 ’
5 >~ | «DNL=-1LSB
5 ;7" §DNL=-0.2515B
(@] f
4+  |DNL=0.5LSB
rd

ol
1
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1

Input Code

Figure 3.41 Differential nonlinearity.

Integral Nonlinearity. The integral nonlinearity describes the maximum de-
viation of the output voltage of a real DA converter from the ideal straight line

(see Fig. 3.42).

Monotonicity. The continuous increase of the output voltage with increasing
input code and the continuous decrease of the output voltage with decreasing input

e
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Figure 3.42 Integral nonlinearity.

code is called monotonicity. A non-monotonic behavior is presented in Fig. 3.43.
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Figure 3.43 Monotonicity.

3.3.2 Switched Voltage and Current Sources

Switched Voltage Sources. The DA conversion with switched voltage sources
shown in Fig. 3.44a is carried out with a reference voltage connected to a resistor
network. The resistor network consists of 2% resistors of equal resistance and is
switched in stages to a binary-controlled decoder so that at the output, a voltage
U, is present corresponding to the input code. Figure 3.44b shows the decoder for
a 3 bit input code 101.

Switched Current Sources. DA conversion with 2% switched current sources
is shown in Fig. 3.45. The decoder switches the corresponding number of current
sources onto the current-voltage converter. The advantage of both techniques is the
monotonicity which is guaranteed for ideal switches but also for slightly deviating
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Figure 3.44 Switched voltage sources.

Figure 3.45 Switched current sources.

resistances. The large number of resistors in switched current sources or the large
number of switched current sources causes problems for long word-lengths. The

techniques are used in combination with other a methods for DA conversion of
higher significant bits.

3.3.3 Weighted Resistors and Capacitors

A reduction in the number of identical resistors or current sources is achieved with
the following method.

Weighted Resistors. DA conversion with w switched current sources which
are weighted according to

L =2, =4I, =...=2¥""], (3.38)
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is shown in Fig. 3.46. The output voltage is
Up=-R-I=—=R (bi112° + by ,2" + b3I32° + ... + b,,1,,2%71), (3.39)

where b, takes values 0 or 1. The implementation of DA conversion with switched

Figure 3.46 Weighted current sources.

current sources is carried out with weighted resistors as shown in Fig. 3.47. The

MsSB LSB

IR

2R | 27R | [23R

Figure 3.47 DA conversion with weighted resistors.

output voltage is

_ _ bl bz b4 bw
U = R I_R(2R+4R+8R+"'+2WR)UR (3.40)
= (27  + 5272 + 5327 + .. by, 279)UR. (3.41)

Weighted Capacitors. DA conversion with weighted capacitors is shown in
Fig. 3.48. During the first phase (switch position 1 in Fig. 3.48) all capacitors
are discharged. During the second phase, all capacitors that belong to 1 bits, are
connected to a reference voltage. Those capacitors belonging to 0 bits are connected
to ground. The charge on the capacitors ', that are connected with the reference
voltage can be set equal to the total charge on all capacitors Cy, which leads to

boC  b3C b, C

Ugr Ca:UR(blc+T+2—2+...+2w_l

)=C,U; =2CUs. (3.42)
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Hence, the output voltage is

Us = (01271 4+ 02272 + 53273 + ... + b, 27 ¥)Up. (3.43)

Figure 3.48 DA conversion with weighted capacitors.

3.3.4 R-2R Resistor Networks

The DA conversion with switched current sources can also be carried with an R-
2R resistor network shown in Fig. 3.49. In contrast to the method with weighted
resistors, the ratio of the smallest to largest resistor is reduced to 2:1.

Figure 3.49 Switched current sources with R-2R resistor network.

The weighting of currents is achieved by a current division in every junction.
Looking right from every junction, a resulting resistance R + 2R || 2R = 2R is
found which is equal to the resistance in vertical direction downwards from the
junction. For the current from junction 1 follows I} = —%%, and for the current

from junction 2 I = % Hence, a binary weighting of the w currents is given by

L =20, =4 = ... =2""1],. (3.44)
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The output voltage U, can be written as

_ by by b3 b
RI = R(2R+4R+8R+"'+2W—IR)UR (3.45)

= —Unr(b127  + 5272 + 03273 4+ ... 4+ b,27Y). (3.46)

Us

3.3.5 Delta-sigma DA Converter

A delta-sigma DA converter is shown in Fig. 3.50. The converter is provided with
w bit data words by an input register with the sampling rate fg. This is follo-
wed by a sample rate conversion up to L fg by upsampling and a digital low-pass
filter. A delta-sigma modulator converts the w bit input signal into a 1 bit out-
put signal. The delta-sigma modulator corresponds to the model in section 3.1.3.
Subsequently, the DA conversion of the 1 bit signal is performed followed by the
reconstruction of the time-continuous signal by an analog low-pass filter.

Sampling Rate Sampling Rate
fs Lfs
* —
woi| < 8 Digital | _|Delta-Sigma| _| 1 bit Analog
of B tL l owipass ™l Moduiator [ DAG [ Low-pass [°
o U2
,’,’ \\\\
,/’ AN _g_
// \\
/// S
w bit C 1bit
n H(z) T

Figure 3.50 Delta-sigma DA converter.



Chapter 4

Audio Processing Systems

4.1 Digital Signal Processors

Digital signal processors (DSP) are used for discrete-time signal processing. Their
architecture and instruction set is specially designed for real-time processing of
signal processing algorithms. Digital signal processors of different manufacturers
and their use in practical circuits will be discussed. The restriction to the archi-
tecture and practical circuits shall provide the user with the criteria necessary
for selecting a DSP for a particular application. From the architectural features of
different DSPs, the advantages of a certain processor with respect to fast execution
of algorithms (digital filter, adaptive filter, FF'T etc.) automatically result. The
programming methods and application programs are not dealt with here, because
the DSP user guides from different manufacturers provide adequate information
in the form of sample programs for a variety of signal processing algorithms.

After comparing DSPs with other microcomputers, the following topics will be
discussed in the forthcoming sections:

Fixed-point DSPs

Floating-point DSPs

Development tools

Single-processor systems
(peripherals, control principles)

93
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e Multi-processor systems
(coupling principles, control principles)

The internal design of microcomputers is mainly based on two architectures;
the von Neumann architecture which uses shared instruction/data bus; and the
Harvard architecture which has separate buses for instructions and data. Proces-
sors based on these architectures are CISCs, RISCs and DSPs. Their characteristics
are given in Table 4.1. Besides the internal properties listed in the table, DSPs

Table 4.1 CISC, RISC and DSP.

| type | characteristics

CISC | Complex Instruction Set Computer
- von Neumann architecture
- assembler programming
large number of instructions
computer families
- compilers
- application: universal microcomputers
RISC | Reduced Instruction Set Computer
- von Neumann architecture/Harvard architecture
- number of instructions < 50
- number of address modes < 4, instruction formats < 4
- hard wired instruction
(no microprogramming)
- processing most of the instructions
in one cycle
- optimizing compilers for high-level programming languages
- application: workstations
DSP | Digital Signal Processor
- Harvard architecture
several internal data buses
assembler programming
- parallel processing of several instructions
in one cycle
optimizing compilers for high-level programming languages
real-time operating systems
application: real-time signal processing

have special on-chip peripherals which are suited to signal processing applications.
The fast response to external interrupts enables their use in real-time operating
systems.
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4.1.1 Fixed-point DSPs

The discrete-time and discrete-amplitude output of an AD converter is usually re-
presented in 2s complement format. The processing of these number sequences is
carried out with fixed-point or floating-point arithmetic. The output of a processed
signal is again in 2s complement format and is fed to a DA converter. The signed
fractional representation (2s complement) is the common way for algorithms in
fixed-point number representation. For address generation and modulo operations
unsigned integers are used. Figure 4.1 shows a schematic diagram of a typical
fixed-point DSP. The main building blocks are program controller, arithmetic lo-

=
o = =
& : 2
S o a
Address > | H ﬂ‘ Data Bus II . %} Host Interface
Data g L 2 |serial AD/DA Interface
[ Program Bus 1T &
Control = 1 1L 1L P A 5 |Serial Interface
g Al H P Y| =
w 1L g
ALU Program
MACIACC Controller

Figure 4.1 Schematic diagram of a fixed-point DSP.

gic unit (ALU) with a multiplier-accumulator (MAC), program and data memory
and interfaces to external memory and peripherals. All blocks are connected with
each other by an internal bus system. The internal bus system has separate in-
struction and data buses. The data bus itself can consist of more than one parallel
bus enabling it, for instance, to transmit both operands of a multiplication in-
struction to the MAC in parallel. The internal memory consists of instruction and
data RAM and additional ROM memory. This internal memory permits a fast
execution of internal instructions and data transfer. For increasing memory space,
address/control and data buses are connected to external memories like EPROM,
ROM and RAM. The connection of the external bus system to the internal bus
architecture has great influence on efficient execution of external instructions as
well as on processing external data. In order to connect serially operating AD/DA
converters, special serial interfaces with high transmission rates are offered by se-
veral DSPs. Moreover, some processors support direct connection to an RS232
interface. The control from a microprocessor can be achieved via a host interface
with a word-length of 8 bits.

An overview of fixed-point DSPs with respect to word-length and cycle time
is shown in Table 4.2. Basically, the precision of the arithmetic can be doubled if
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quantization affects the stability and numeric precision of the applied algorithm.
The cycle time in connection with processing time (in processor cycles) of a com-
bined multiplication and accumulation command gives insight into the computing
power of a particular processor type. The cycle time directly results from the
maximum clock frequency. The instruction processing time depends mainly on the
internal instruction and data structure as well as on the external memory connecti-
ons of the processor. Table 4.3 contains the internal memory partitioning of several

Table 4.2 Fixed-point DSPs.

[ type | word-length | cycle time |
ADSP-2100 16 60/77/80/100 ns
AT&T DSP16 16 95/33/55/75 ns
Motorola DSP56156 16 33/50 ns
Motorola DSP56001/2 24 60/74 ns
NEC 77C25 16 100/122 ns
NEC 77220 24 100/122 ns
TI 320C1x 16 114/120/200/280 ns
TT 320C2x/5x% 16 C2x 78/98/125 ns

Cbx 35/50 ns

DSPs. A large on-chip memory for data and instructions is a precondition for ef-
ficient programming of algorithms. Data and instruction transfer from external
memories can hence be avoided. The availability of special tables (cosine, sine) in
ROM supports algorithms like FFT.

Table 4.3 Internal memory structure (P = program, D = data).

type on-chip on-chip on-chip
D-RAM P-RAM ROM
ADSP-2100 - 16 -
ADSP-2101/2/11 1k 2k -
AT&T DSP16A 2k - 4k (P/D)
DSP56156 2k 2k 64 (P)
DSP56001/2 2x256 512 2x256 (D)
NEC 77C25 256 - 1k (D) 2k (P)
NEC 77220 2x256 - 1k (D) 2k (P)
TT 320C1x 256 - 4k (P)
TI 320C25 288 2566 (P/D) 4k (P/D)
TT 320C26 - 1.5k (D/P) 256 (P)
TI 320C50/51 1k 9k/1k (D/P) | 2k (P)/8k (P)
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The fast access to external instruction and data memories is of special signifi-
cance in complex algorithms and in processing huge data loads. Further attention
has to be paid to the linking of serial data connections with AD/DA converters and
the control by a host computer over a special host interface (Table 4.4). Complex
interface circuits could therefore be avoided. For stand-alone solutions, program
loading from a simple external EPROM can also be done.

Table 4.4 External peripherals (xS = x serial interface, xP = x parallel interface).

type external on-chip
memory peripherals
ADSP-2100 32k (P), 16k (D) -
ADSP-2101/2 16k (P), 16k (D) 28
ADSP-2111 16k (P), 15k (D) 25, 1P
AT&T DSP16A | 64k 1S, 1P
DSP56156 64k (P), 64k (D) 25, 1P

DSP56001 /2 64k (P), 128k (D) | 28, 1P
NEC 77C25 : 1S, 1P
NEC 77220 8k (P), 8k (D) 18, 1P
TI 320C1x 4k
TI 320C25/26 | 64k (P), 64k (D) | 18
TI 320C50/51 | 64k (P), 64k (D) | 2S

For signal processing algorithms, the following software commands are neces-
sary:

1. MAC (multiply and accumulate)
— combined multiplication and addition command

2. simultaneous transfer of both operands for multiplication to the MAC (par-
allel move)

3. bit-reversed addressing (for FFT)

4. modulo addressing (for windowing and filtering)

Different signal processors have different processing times for FFT implemen-
tations. The latest signal processors with improved architecture have shorter pro-
cessing times. The instruction cycles for the combined multiplication and accumu-
lation command (application: windowing, filtering) are approximately equal for
different processors, but processing cycles for external operands have to be consi-
dered.
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4.1.2 Floating-point DSPs

Figure 4.2 shows the block diagram of a typical floating-point DSP. The main
characteristics of the different architectures are the dual-port principle (Moto-
rola, Texas Instruments) and the external Harvard architecture (Analog Devices,
NEC). Floating-point DSPs internally have multiple bus systems in order to ac-
celerate data transfer to the processing unit. An On-chip DMA controller and
cache-memory support higher data transfer rates. An overview of floating-point
DSPs is shown in Table 4.5. Besides the standardized floating-point representa-
tion IEEE-754, there are also manufacturer-dependent number representations.
The internal memory structure is given in Table 4.6.

=
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s o fa)
Multipte
Address g . ik DataBus J| | § Address
Data §< : ,LL Elj_ Program Bus ﬂ: gm Data
Control | & [ T v 9 T % Control
UJ ~, > - > b > w
ALU Program
MACIACC Confroller g Serial
_g interfaces
‘S | Communication
v E Ports

Figure 4.2 Block diagram of a floating-point digital signal processor.

Table 4.5 Floating-point DSPs.

| type | word-length | cycle time |
ADSP-21060 32 (IEEE-754) 55 ns
AT&T DSP32C 32 80/100 ns
Motorola DSP96002 | 32 (IEEE-754) | 50/60/74 ns
NEC 77230 32 150 ns
NEC 77240 32 90 ns
TI 320C3x 32 50/60/74 ns
TI 320040 32 40/50 ns

An overview of external address space and on-chip peripherals is given in Table
4.7. The external dual-port architecture of some floating-point DSPs supports the
design of multiprocessor systems.
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Table 4.6 Internal memory structure (C = cache memory).

type on-chip on-chip
D/P-RAM ROM

ADSP-21060 4 Mbit (P/D)

AT&T DSP32C 2x512 (P/D) 4k (P/D)

or 512 P/D-RAM
M DSP96002 2x512 (D), 1k (P) | 64 Boot, 2x512 (D)

NEC 77230 2x512 (D) 2k (P), 1k (D)

NEC 77240 2x512 (D) 2k (P), 1k (D)

TI 320C3x 2x1k (P/D) 4k (P/D)
64 (C)

TI 320C40 2x1k (P/D) 4k (P/D)
128 (C)

Table 4.7 External peripherals (xS = x serial interface, xP = x parallel interface).

type ext. buses on-chip
peripherals
ADSP-21060 4Gx32/48 (P/D) 25/6P
AT&T DSP32C | 4Mx32 (P/D) 15, 1P
DSP96002 2x 32 bit (A), 2x 32 bit (D) -
dual-port architecture
NEC 77230 8kx32 (P/D) 15
NEC 77240 64kx32 (P), 16Mx32 (D)
external Harvard architecture
TT 320C30 16Mx32 (P/D), 8kx32 (P/D) | 2S
dual-port architecture
TT 320040 2x 32 bit (A), 2x 32 bit (D) 6P
dual-port architecture

4.1.3 Development Tools

The rapid development of hard- and software for a certain application is supported
by development tools which are listed below:

e Manufacturers’ Literature (Data Books): Data books of manufacturers, ap-
plication examples and detailed program libraries.

e Assembler/Compiler/Linker: Tools for developing software.

e High-level Language Compilers: The use of higher language compilers allows
a fast software development without special knowledge of the architecture
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and the instruction set of the processor. The generated assembler code can
be optimized with respect to processing speed. The advantage of using hig-
her language compilers is the compatibility of the code for different signal
processors and the associated fast access to algorithms for future DSPs.

e Real-time Operating Systems: Special operating systems for DSPs with a
core consisting of memory management and hardware-interrupt handling,
a programming interface for linking application programs and a real-time
multitasking core.

e Software Simulator: A software simulator simulates the modules of a DSP
and the execution of programs. All registers, memories and interfaces are
accessible. Therefore, the programs can be tested under the boundary con-
ditions of the DSP.

e Hardware Emulator (In-circuit Emulation): In-circuit emulation serves for
testing the DSP in the target hardware. With the help of a special target
cable, the hardware emulator is connected into the socket for the DSP.

¢ On-chip Emulation: The advantage of a DSP with integrated on-chip emula-
tion is the possibility of self-testing the hardware and software in the target
application with the DSP.

¢ EPROM Simulator: Besides the on-chip emulation, the use of EPROM simu-
lators (or program loading by a control processor) supports the hardware and
software development in the target hardware.

4.2 Digital Audio Interfaces

For transferring digital audio signals, two transmission standards have been esta-
blished by the AES (Audio Engineering Society) and the EBU (European Broad-
casting Union) respectively. These standards are for two-channel transmission
[AES92] and for multichannel transmission of up to 56 audio signals.

4.2.1 Two-channel AES/EBU Interface

For the two-channel AES/EBU interface, professional and consumer modes are
defined. The outer frame is identical for both modes and is shown in Fig. 4.3.
For a sampling period a frame is defined so that it consists of two subframes, for
channel 1 with preamble X, and for channel 2 with preamble Y. A total of 192
frames form a block, the block start is characterized by a special preamble Z. The
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X | Channe! 1| Y |Channel 2| Z|Channel 1| Y |Channel 2| X |Channel 1] Y {Channel 2| X

Subframe 1 | Subframe 2

j&——— Frame 191 ———s»i¢———— Frame 0 —-—F— Frame 1 ———

r+——— Start of block

Figure 4.3 Two-channel format.

bit allocation of a subframe consists of 32 bits as in Fig. 4.4. The preamble consists
of 4 bits (bit 0...3) and the audio data of up to 24 bits (bit 4...27). The last four
bits of the subframe characterize Validity (validity of data word or error), User
Status (usable bit), Channel Status (from 192 bits/block=24 bytes coded status
information for the channel) and Parity (even parity). The transmission of the

01 234 2728 2930 31

Preamble |LSB 24 bit audic sample word MSB| ViU|C|P

Figure 4.4 Two-channel format (subframe).

serial data bits is carried out with a biphase code. This is done with the help of
an XOR relationship between clock (of double bit rate) and the serial data bits
(Fig. 4.5). At the receiver, clock retrieval is achieved by detecting the preamble
(X=11100010, Y=11100100, Z=11101000) as it violates the coding rule (see Fig.
4.6). The meaning of the 24 bytes for channel status information is summarized in

LT LT F ]| Clockaxbirate

l I I Source coding
(biphase mark)

Figure 4.5 Channel coding.

O = O

Table 4.8. An exact bit allocation of the first three important bytes of this chan-
nel status information is presented in Fig. 4.7. In the individual fields of byte 0,
preemphasis and sampling rate are specified besides professional/consumer modes
and the characterization of data/audio (see Tables 4.9 and 4.10). Byte 1 determi-
nes the channel mode (Table 4.11). The consumer format (often labeled as SPDIF
= Sony/Philips Digital Interface Format) differs from the professional format in
the definition of the channel status information and the technical specifications
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I T[] clockeotrae
117100010

T | |_| I—l Channel coding
. {biphase mark)
Parity | LSB |
Lack of transition at bit boundary

Figure 4.6 Preamble X.

Table 4.8 Channel status bytes.

| byte [ description

0 emphasis, sampling rate

1 channel use

2 sample length

3 vector for byte 1

4 reference bits

5 reserved

6-9 4 bytes of ASCII origin
10-13 | 4 bytes of ASCII destination
14-17 | 4 bytes of local address
18-21 | time code

22 flags
23 CRC
Byte 0 Emphasis Sampling rate
0] 1 2 3 4 5 6 7
| I |
Professional/ Datal Unlockedflocked

Consumer Audio

Byte 1 Channel mode Not used

Q 1 2 3 4 5 6 7
Byte 2 Sample length Encoded length 0

0 1 2 3 4 5 [ 7

Figure 4.7 Bytes 0...2 of channel status information.

for inputs and outputs. The bit allocation for the first four bits of the channel
information is shown in Fig. 4.8. For consumer applications, two-wired leads with
RCA connectors are used. The inputs and outputs are asymmetrical. Also, optical
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Table 4.9 Emphasis field.

none indicated, override enabled
none indicated, override disabled
50/15 ps emphasis

CCITT J.17 emphasis

O e O

Table 4.10 Sampling rate field.

0 ! none indicated (48 kHz default)
1| 48 kHz

2 | 44.1 kHz

3| 32 kH=

Table 4.11 Channel mode.

none indicated (2 channel default)

two channel

monaural

primary/secondary (A=primary, B=secondary)
stereo (A=left, B=right)

vector to byte 3

=1 W= O

connectors exist. For professional use, shielded two-wired leads with XLR connec-
tors and symimetrical inputs and outputs (professional format) are used. Table
4.12 shows the electrical specifications for professional AES/EBU interfaces.

Table 4.12 Electrical specifications of professional interfaces.

output impedance | signal amplitude | jitter
110 Q 2-7TV max. 20 ns

input impedance signal amplitude | connect.
110 Q min. 200 mV XLR
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Byte O Mode
D 1 2 3 4 5 6 7
| t 1
Consumer (=0) Datgj Quad/Stereo
Audio Not used
Preemphasis/None
Copy Permitted/Copyright
Byte 1 category 0
0 1 2 3 4 5 6 7
0 general purpose |
2 PCM Generation
3 ADC
4 CD
6 DAT
Byte 2 source number channel number
bl 1 2 3 4 5 [} T
Byte 3 Sag;taehng 0 Accuracy | Reserved
b 1 2 3 4 5 8 7
0 44.1kHz 0 Normal
1 48 kHz 1 Variable speed
2 Resserved 2 High accuracy
3 32kHz 3 Reserved

Figure 4.8 Bytes 0...3 (consumer format).

4.2.2 MADI Interface

For connecting an audio processing system at different locations, a MADI interface
(Multichannel Audio Digital Interface) is used. A system link by MADI is pre-
sented in Fig. 4.9. Analog/digital I/O systems consisting of AD/DA converters,
AES/EBU interfaces (AES) and sampling rate converters {(SRC) are connected
to digital distribution systems with bi-directional MADI links. The actual audio
signal processing is performed in special DSP systems which are connected to the
digital distribution systems by MADI links. The MADI format is derived from
the two-channel AES/EBU format and allows the transmission of 56 digital mono
channels (see Fig. 4.10} within a sampling period. The MADI frame consists of
56 AES/EBU subframes. Each channel has a preamble containing the information
shown in Fig. 4.10. The bit 0 is responsible for identifying the first MADI channel
(MADI Channel 0). Table 4.13 shows the sampling rates and the corresponding
data transfer rates. The maximum data rate of 96.768 Mbit /s is required at samp-
ling rate of 48 kHz+12.5%. Data transmission is done by FDDI techniques (Fiber
Distributed Digital Interface). The transmision rate of 125 Mbit/s is implemented
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ADC
DAC Analog Digital Audio
Digital MADI Y Distribution m Signal
AES | o system System Processing
SRC
8
<
2
ADC

DAC Analog Digital Audio
Digital Distribution ¥ MADI Y  Signal
AES | o system System Processing

SRC
=
e
=
N7 = Reference Clock
Asynchr. Sampling
Frequency
MADI '
Conversion

Figure 4.9 A system link by MADI.

AES/EBU Format Subframe ;
01 2 34 2728 2930 31

Audio sample word VIiu(C|P

L maDI syne
MAD! A/B
MADI ACTIVE

MADI CHANNEL O

MADI Frams Period :

Z channel 0 channel 1 2 Z channel 54 channel 55 2

Figure 4.10 MADI frame format.

with special TAXI chips. The transmission for a coaxial cable is already specified
(see Table 4.14). The optical transmission medium for audio applications is not
yet defined.

A unidirectional MADI link is shown in Fig. 4.11. The MADI transmitter
and receiver must be synchronized by a common master clock. The transmission
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between FDDI chips is performed by a transmitter with integrated clock generation
and clock retrieval at the receiver.

Table 4.13 MADI specifications.

sampling rate 32 kHz - 48 kHz + 12.5%
transmission rate 125 Mbit/s
data transfer rate 100 Mbit/s

max. data transfer rate | 96.768 Mbit/s (56 channels at 48 kHz+12.5%)
min. data transfer rate | 50.176 Mbit/s (56 channels at 32 kHz—12.5%)

Table 4.14 Electrical specifications (MADI).

output impedance | signal ampl. | cable length connect.
75 Q 0.3-0.7 V 50m (coaxial cable) | BNC

1 1
' TRANSMITTER | RECENVER :
. ! .
[} i |
1 \ 1
1 H I
1 N 1
1 H ]
1 ] h — :
1
| DATA ) smisB DATA ! . DATA o DATA, DATA 1
1 SB/4 » —r
i s |, 1 ‘a2 |ENCODER ! DECODER | 92| @ 2 |
1 ul 1 w I
1 Iy w )
| =] ! 2 !
s @ | READ | CLOCK |CLOCK : clock |crock fs' fs
[y GEN SYNC ]
1™ ! RX
| i ]
I h )
| | |
I | :
' | [ b
: XTAL | XTAL :
| | |
1 | |
| | !
| | )
| ( |
) | srne | syNG |
1| | REGEN i REGEN| |
! |
1 1
T ] —_——l
s
MASTER

Figure 4.11 MADI link.
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4.3 Single-processor Systems

4.3.1 Peripherals

A common system configuration is shown in Fig. 4.12. It consists of a DSP, clock
generation, instruction and data memory and a BOOT-EPROM. After RESET,
the program is loaded into the internal RAM of the signal processor. The loading
is done byte by byte so that only an EPROM with 8 bit data word-length is
necessary. In terms of circuit complexity the connection of AD/DA converters

=
= =
e2| | 2| |2 3
Og o o ¥
mm E a [m]
| | s [ T
7 P Wi |
J
7
DSP
¥
ADC g3 £ DAC
1 o——1 SCLK |e 20 @ »sclk  —o 1
2 om——m SDATA T I SDATA 2
WOLK el 1| weik

» CLKINZ
CLKIN & CLKIN28

Figure 4.12 DSP system with two-channel AD/DA converters (C = control, A = ad-
dress, D = data, SDATA = serial data, SCLK = bit clock, WCLK = word clock, SDRX
= serial input, SDTX = serial output).

over serial interfaces is the simplest solution. Most fixed-point signal processors
support serial connection where a lead for bit clock SCLK, sampling clock/word
clock WCLK, and the serial input and output data SDRX/SDTX are used. The
clock signals are obtained from a higher reference clock CLKIN (see Fig. 4.13). For
non-serially operating AD /DA converters, parallel interfaces can also be connected
to the DSP.

4.3.2 Control

For controlling digital signal processors and data exchange with host processors,
some DSPs provide a special host interface that can be read and written directly
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i | L cuows
C 1N X 21N > SDRX
< 1out X 20Ut > SO

Figure 4.13 Serial transmission format.

(see Fig. 4.14). The data word-length depends on the processor. The host interface
is included in the external address space of the host or is connected to a local bus
system, for instance a PC bus.

=

O = =
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o
= []

8 ——I
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A —r—0

5 8/32116| T

Figure 4.14 Control via a host interface of the DSP (CS = chip select, R/W =
read /write, A = address, D = data).

A DSP as a coprocessor for special signal processing problems can be used
by connecting it with a dual-port RAM and additional interrupt logic to a host
processor. This enables data transmission between the DSP system and host pro-
cessor (see Fig. 4.15). This results in a complete separation from the host processor.
The communication can either be interrupt-controlled or carried out by polling a
memory address in a dual-port RAM.

A very simple control can be done directly via an RS232-interface. This is
can be carried out via an additional asynchronous serial interface (Serial Commu-
nication Interface) of the DSP (see Fig. 4.16).

4.4 Multiprocessor Systems

The design of multiprocessor systems can be carried out by linking signal proces-
sors by serial or parallel interfaces. Besides purely multiprocessor DSP systems,
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Figure 4.15 Control over a dual-port RAM and interrupt.
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Figure 4.16 Control over a serial interface (R5232, RS422).

an additional connection to standard bus systems can be made as well.

4.4.1 Connection via Serial Links

In connecting via serial links, signal processors are cascaded so that different pro-
gram segments are distributed over different processors (see Fig. 4.17). The serial
output data is fed into the serial input of the following signal processor. A synchro-
nous bit clock and a common synchronization SYNC control the serial interface.
With the help of a serial time-multiplex mode (Fig. 4.18) a parallel configuration

SDATA o— —o SDATA
DSP DSP bSP DSP

SCLI/SYNG cj- [ [ "

Figure 4.17 Cascading and pipelining (SDATA = serial data, SCLK = bit clock, SYNC
= synchronization).

can be designed which, for instance, feeds several parallel signal processors with
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serial input data. The serial outputs of signal processors provide output data in
time-multiplex. A complete time-multiplex connection via the serial interface of

| psp
SDATAo——¢ [ 7] L — o SDATA
2
SCLK/SYNC o—p¥~.
DSP
—
DSP
i
DSP
—

Figure 4.18 Parallel configuration with output time-multiplex.

the signal processor is shown in Fig. 4.19. The allocation of a signal processor at a
particular time slot can either be fixed or carried out by an address control ADR.

DSP DSP DSP DSP

SDATA o i I t I o SDATA

2
SCLK/SYNC of

ADR o

Figure 4.19 Time-multiplex connection (ADR = address at a particular time).

4.4.2 Connection via Parallel Links

The connection via parallel links is possible with dual-port processors as well as
with dual-port RAMs (see Fig. 4.20). A parallel configuration of signal processor

PDATAC:: DSP {* ) DSP (. N DSP ¢ N DSP (:::) PDATA

Figure 4.20 Cascading and pipelining.

systems with a local bus is shown in Fig. 4.21. The connection to the local bus is
done either over a dual-port RAM or directly with a second signal processor port.
Another possible configuration is the use of a 4-port RAM as shown in Fig. 4.22.
Here, one processor serves as a connector to a system bus and feeds three other
processors over a 4-port RAM with control and data information.
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Figure 4.21 Parallel configuration.

System Bus
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DSP

DSP (—§ S (=) bsP

11

DSP

Figure 4.22 Connection over a 4-port RAM.

4.4.3 Connection via Standard Bus Systems

The use of standard bus systems (VME bus, MULTIBUS, PC bus) to control mul-
tiprocessor systems is presented in Fig. 4.23. The connection of signal processors
can either be carried out directly over a control bus or with the help of a special
data bus. This parallel data bus can operate in time-multiplex. Hence control in-
formation and data are separated. A few of the criteria for standard bus systems

y System Bus N
. )
1 1 1L 1
DsP DSP DSP| .- |DSP
(LII ﬁ )
! TDM Bus ’

Figure 4.23 Signal processor systems based on standard bus system.

are data transfer rate, interrupt request and processing, the option of several ma-
sters, auxiliary functions (power supply, bus error, battery buffer) and mechanical
requirements.
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4.4.4 Scalable Audio System

The functional segmentation of an audio system into different stages, the analog,
interface, digital and man-machine stages, is shown in Fig. 4.24. All stages are con-

Operator
Console
3
Host
Computer
DSP Digital
Systems Signal
L‘ Processing
2]
3
LAN e
b=l
3
<
AES/EBU
MAD!
i - Y
Q
ADcIDAC! | B le—» Interfaces
(=]
2
A
)
Analog | | @ Analog
Interfaces [ g Processing
<

Figure 4.24 Audio system.

trolled by a LAN (Local Area Network). In the analog domain, crosspoint switches
and microphone amplifiers are controlled. In the interface domain AD/DA conver-
ters and sampling rate converters are used. The connection to a signal processing
system is done by AES/EBU and MADI interfaces. A host computer with a control
console for the sound engineer serves as the central control unit.

The realization of the digital domain with the help of a standard bus system
is shown in Fig. 4.25. A central mixing console controls several subsystems over
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a host. These subsystems have special control computers which control several
DSP modules. The system concept is scalable (extendable in modules) within a
subsystem and by extension to several subsystems. Audio data transfer between
subsystems is performed by AES/EBU and MADI interfaces. The segmentation
within a subsystem is shown in Fig. 4.26. Here, besides DSP modules, digital inter-
faces (AES/EBU, MADI, sampling rate converters, etc. ) and AD/DA converters
can be integrated.

Subsystem 1
@ g Audio Bus U
Control DSP DSP | AES/EBU
Module ° e o Module »
LAN Computer 1 n MADI
T\L o System Bus ﬁ
Host o
Computer
Subsystem m o
Control 1; 1 b Audio Bus {L
C
onsole Control DSP DSP | AES/EBU
o L] ) -
Computer Mo<11u|e o Mogule o 1"
ﬁ N System Bus {T

Figure 4.25 Scalable digital audio system.

<L Audio Bus jj>

- L i I Analog I/0

< MAD!
N Sampling Rate
DSP MADI Conversion
Digital 1/0 ADC
Units AES/EBU DAC
Synchronization

AESIEBU

<ﬁ ¢ : System Bus l Vf>

Figure 4.26 Subsystem.




Chapter 5

Equalizers

Spectral sound equalization is one of the most important methods for processing
audio signals. Equalizers are found in various forms in the transmission of audio
signals from a sound studio to the listener. The more complex filter functions are
used in sound studios. But in almost every consumer product like car radios, hifi-
amplifiers etc., simple filter functions are used for sound equalization. The first
section of this chapter discusses the design and the implementation of recursive
audio filters. In the second and third sections, linear phase nonrecursive filter
structures and their implementation are introduced.

5.1 Recursive Audio Filters

5.1.1 Design

A certain filter response can be approximated by two kinds of transfer function.
On the one hand, the combination of poles and zeros leads to a very low-order
transfer function H(z) in fractional form, which solves the given approximation
problem. The digital implementation of this transfer function needs recursive pro-
cedures owing to its poles. On the other hand, the approximation problem can
be solved by placing only zeros in the z-plane. This transfer function H(z) has,
besides its zeros, a corresponding number of poles at the origin of the z-plane. The
order of this transfer function, for same approximation conditions, is substanti-
ally higher than for transfer functions consisting of poles and zeros. In view of an
economical implementation of a filter algorithm in terms of complexity, recursive
filters achieve shorter computing time owing to their lower order. For a sampling

115
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rate of 48 kHz, the algorithm has 20.83 ps processing time available. With the
DSPs presently available it is easily possible to implement recursive digital filters
for audio applications within this sampling period using only one DSP. Starting
with the design of typical equalizers in the S-domain, these filters will be mapped
to the Z-domain by the bilinear transformation.

Low-pass/High-pass Filters. In order to limit the audio spectrum, low-pass
and high-pass filters with Butterworth response are used in analog mixers. They
offer a monotonic pass-band and a monotonically decreasing stop-band attenuation
per octave (n -6 dB/oct.) that is determined by the filter order. Low-pass filters
of the second and fourth order are commonly used. The normalized second-order
low-pass transfer function is given by

1

Hip(s) = ————.
Lr(s) s2+ gos+1

(5.1)

The @Q-factor (), of a Butterworth approximation is equal to 1/ V2. The corre-
sponding second-order high-pass transfer function

32

Hyp(s) = ————
1p(s) s2+ gos+1

(5.2)

is obtained by a low-pass to high-pass transformation. Figure 5.1 shows the pole-
zero locations in the s-plane. The amplitude frequency response of a high-pass

a) jw b) je
x x
i /
/ )
I — o
\ \
\ \
\ \
\ \
K\ x\

Figure 5.1 Pole-zero location for a) second-order low-pass and b) second-order high-pass.

filter with a 3 dB cutoff frequency of 50 Hz and a low-pass filter with a 3 dB cutoff
frequency of 5000 Hz are shown in Fig. 5.2. Second- and fourth-order filters are
shown.

Table 5.1 summarizes the transfer functions of low-pass and high-pass filters
with Butterworth response.
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Figure 5.2 Frequency response of low-pass and high-pass filters - high-pass f; = 50 Hz
(second-/fourth-order), low-pass f. = 5000 Hz (second- /fourth-order).

Table 5.1 Transfer functions of low-pass and high-pass filters.

Low-pass | H(s) = ;—5—;\713?1- second-order
H(s) = (sz+1.8485+1)1(52+0,765s+1) fourth-order
High-pass | H(s) = m—\s/zm second-order
H(s) = (52+1.8485+1§?52+0.7655+1) fourth-order

Shelving Filters. Besides the purely band-limiting filters like low-pass and
high-pass filters shelving filters are used to perform weighting of certain frequen-
cies. A simple approach for a first-order shelving filter is given by

Hy
H(s) =1+ —. (5.3)

It consists of a first-order low-pass filter with dc amplification of Hy connected in
parallel with an all-pass system of transfer function H(s) = 1. Equation (5.3) can
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be written as
s+ (1+Hy) s+W

= 5.
s+1 s+1 (5-4)

H(s) =

where V) determines the amplification at w = 0. By changing the parameter Vj,
any desired boost (Vo > 1) and cut (Vg < 1) level can be adjusted. Fig. 5.3 shows
the asymptotes of the frequency response. For Vy < 1, the cutoff frequency w, is
moved to lower frequencies.

t

)
2 16
— 6 dB/oct.
<3) V. >1
3 0
D
z \
1\ loglw/og)
V0< 1
-16

Figure 5.3 Asymptotes of the frequency response with transfer function (5.4).

In order to obtain a symmetrical amplitude frequency response relative to the
frequency axis without changing the cutoff frequency, it is necessary to invert the
transfer function (5.4) in the case of cut (V5 < 1). This has the effect of swapping
poles with zeros and leads to the transfer function

s+ 1
H(s) = 5.5
()= 25 (5.5)
for cut (Fig. 5.4).
E- F 3
P_* +16
\g V0<1
z 1
7 —+ log(w/iog)
(A
-16

Figure 5.4 Asymptotes of the frequency response with transfer function (5.5).
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Figure 5.5 shows the locations of poles and zeros for both the boost and the
cut case. By moving zeros and poles on the negative o-axis, boost and cut can be

Boost N Cut jo
'Vo ; 'Vo )
O - 1* a a3 - 13 S
D — ' -
\ 0 V0

Figure 5.5 Pole-zero locations of a first-order low-frequency shelving filter.

is given by

adjusted. The equivalent shelving filter for high frequencies is obtained by means of
a low-pass to high-pass transformation. In the case of boost, the transfer function

SVO +1
H(s) = Vo> 1
(s) s+1 0 >
and for cut we get

(5.6)

s+1

= Vo> 1
SVO+1 0

H(s) (5.7)
The parameter Vg, determines the value of the transfer function H(s) at w = oo
for high-frequency shelving filters.

In order to increase the slope of the filter respbnse in the transition band, a
general second-order transfer function
H(S) _ 0282 + a8+ ag

5.8
$24+v/2s+1 (58)

is considered, in which complex zeros are added to the complex poles. The calcu-
lation of poles leads to

1 .
Seol/2 = 5(—1 * 7). (5.9)
If the complex zeros
A% :
So1/2 = 70(—1 =)

(5.10)
are moved on a straight line with the help of the parameter V; (see Fig. 5.6), the
transfer function

H(s) = s% 4+ 2Vhs + Vo
T 24425+ 1

(5.11)
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of a second-order low-frequency shelving filter is obtained. The parameter V; de-
termines the boost for low frequencies. The cut case can be achieved by inversion
of Equation (5.11).

Boost io Cut jo

‘o X

X, A -
Vo X, Vo o
l‘ - J.
a [ At * g
b3 E-%

oz o

o X

Figure 5.6 Pole-zero locations of a second-order low-frequency shelving filter.

A low-pass to high-pass transformation of (5.11) provides the transfer function

_ Vos?+ V2Vs + 1

H(s 5.12
(5) s24+V2s+1 (5.12)
of a second-order high-frequency shelving filter. The zeros
1 .
So1/p = 2—%(—1 =+ 7) (5.13)

are moved on a straight line towards the origin with increasing Vo (see Fig. 5.7).
The cut case is obtained by inverting the transfer function (5.12). Figure 5.8 shows
the amplitude frequency response of a low-frequency shelving filter with cutoff
frequency 100 Hz and a high-frequency shelving filter with cutoff frequency 5000
Hz (parameter V).

Peak Filter. Another equalizer used for boosting or cutting any desired fre-
quency is the peak filter. With the help of a second-order band-pass transfer func-

tion
(HO/QOO)S

Hpp(s) = ——of¢eo)?
zp(s) 2+ s+

(5.14)

the transfer function

H(s) = 1+ Hgp(s)
5% + 1ESAHL5+1

32+Q—l—s+1
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Figure 5.7 Pole-zero locations of second-order high-frequency shelving filter.
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Figure 5.8 Frequency responses of low-/high-frequency shelving filters - low-frequency
shelving filter f. = 100 Hz (parameter Vp), high-frequency shelving filter f, = 5000 Hz
(parameter Vo).

s+ Qlo_3+ 1
2+ (5.15)
8° + Q—DOS-I- 1

of a peak filter can be derived. It can be shown that the maximum of the amplitude
frequency response at the center frequency is determined by the parameter Vj.
The relative bandwidth is fixed by the @-factor. The geometrical symmetry of
the frequency response relative to the center frequency remains constant for the

transfer function of a peak filter (5.15). The poles and zeros lie on the unit circle.
By adjusting the parameter V), the complex zeros are moved with respect to the
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complex poles. Figure 5.9 shows this for the boost and cut cases. With increasing
Q-factor, the complex poles move towards the jw-axis on the unit circle.

Boost ¥ cu ”
V, . v, .
0% 0 .o

(o] b

. ,

_1 II [s3 _1 T [+
Q X
\‘x '\'Q

Figure 5.9 Pole-zero locations of a second-order peak filter.

Figure 5.10 shows the amplitude frequency response of a peak filter by changing
the parameter Vj at a center frequency of 500 Hz and a @-factor of 1.25. Figure
5.11 shows the variation of the Q-factor (o at a center frequency of 500 Hz, a
boost/cut of £16 dB and Q-factor of 1.25.

10 +-

IH(OI [dB] —
=)

10! 102 103 104 105
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Figure 5.10 Frequency response of a peak filter - fo = 500 Hz, Qoo = 1.25, cut parameter
Vo.
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Figure 5.11 Frequency responses of peak filters
= 0.707, 1.25, 2.5, 3, 5.

fe = 500Hz, boost/cut +16 dB Qo
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Figure 5.12 Frequency responses of peak filters - boost/cut +16 dB, Qo = 1.25
fe = 50, 200, 1000, 4000 Hz.

Mapping to Z-domain. In order to implement a digital filter, the filter de-
signed in the S-domain with transfer function H(s) is converted to the Z-domain
with the help of a suitable transformation to obtain the transfer function H(z).
The impulse-invariant transformation is not suitable as it leads to overlapping ef-
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fects if the transfer function H(s) is not band-limited to half the sampling rate. An
independent mapping of poles and zeros from the S-domain into poles and zeros
in the Z-domain is possible with help of the bilinear transformation given by

s 2z2-—-1
T Taz+1

(5.16)

Tables 5.2, 5.3 and 5.4 contain the coefficients of the second-order transfer function

ag + alz"l + agz_2

Hz) = 1+ by271 +byz=2’

(5.17)

which are determined by the bilinear transformation and the auxiliary variable
K = tan(w,T'/2) for different filter types. Strategies for time-variant switching of

audio filters can be found in [Z56193].

Table 5.2 Low-pass/high-pass filter design.

low-pass (second-order)

ao al az b b2
__K* ___2K? _ K 2(K2-1 1-VEK+K2
1+vV2K+K? 1+V2K+K?2 1+V2K+K2 1+V2K+K?2 1+V2K+K?2
high-pass (second-order)
ao a a» b ba
1 -2 1 (K21 1— V2K + K2
1+vV2K +K?2 1+V2K+K? 1+V2K+K?2 1+V2K+K2 1+V2K+K?2
Table 5.3 Peak filter design.
peak (boost Vo = 10¢/29)
ag a1 asz b1 b2
1+ 5o K+K? 2(K2_1) 1- - K+ K2 2K2-1) 1-$1 K+K?
1+a{: K+K2 1+D{:K+K2 1+ 5= K+K? 14+ e K+K? I+ K+K?
peak (cut Vp = IO"G”O)
ao a1 as b b2
T T o ek
1+ gL K+K? 1+ L K+K? 1+ gL K+ K2 14 oL K+K2 I+l K+I2
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Table 5.4 Shelving filter design.
low-frequency shelving (boost Vo = 10%/2%)
o al a? bl bz
14/2Vo K+Vo K2|  2(voK2~1) 1- /2o K+VoK? | ak2-1) 1-VZK K2
1+V2K4+ K2 1+V2K+K? 14+V2K+K2 1+vV2K+K? 1+V2K+K2
low-frequency shelving (cut Vp = 10~¢/20)
o a) as by b2
1+ 2K+ K2 2(K?%-1) 1-V2K4+ K2 2(VogK2-1) l—\/2VoK+VoK2
14+/2Va K4 Vo K2 | 14/2VogK+VoK2| 144/2VoK+VoK2| 144/2Vo K+ VK2 1++/2Vg K+ Vo K2
high-frequency shelving (boost Vo = 109/%°)
ao [13] az b1 bz
Vo+/2Vo K+K2 | 2(K2-V)) Vo—/2Vo K+ K> 2(K%-1) 1- V2K + K2
1+V2K+ K2 1+V2K4+ K2 14+V2K+K? 1+vV2K+ K2 1+VIK K2
high-frequency shelving (cut Vo = 10~¢/2%)
ao @) az bl b2
142K+ K2 2(K2-1) l—vV2K+K2 2(K?/Vo—1) 1—\/2/V0K+K2/Vo
Vot 2VoK+K? | Vot /2VoK+K2 | Vor2VoK+K2 | 14/2/VoK+K2/Vo | 1+/2/VoK+K2/Vp

5.1.2 Parametric Filter Structures

Parametric filter structures allow direct access to the parameters of the transfer
function, like center/cutoff frequency, bandwidth and gain, via control of associated
coefficients. To modify one of these parameters, it is therefore not necessary to
compute a complete set of coefficients for a second-order transfer function, but
instead only one coefficient in the filter structure is calculated.

An independent control of gain, cutoff/center frequency and bandwidth is
achieved by a feed forward (FW) structure for boost and a feed backward (FB)
structure for cut as shown in Fig. 5.13. The corresponding transfer functions are:

Grw(z) = 1+ HgH(2) (5.18)
Grp(z) TJTI{IOT(,—T) (5.19)

The boost/cut factor is Vy = 1 + Hp. For digital filter implementations, it is ne-
cessary for the feed backward case that the inner transfer function be of the form
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x{n) + ? o y(n)

H(z)

§<>Ho

Cut Boost

Figure 5.13 Filter structure for implementing boost and cut filters.

H(z) = z71H,(2) to ensure stability. A parametric filter structure proposed by
Harris [Har93] is based on the feed forward/feed backward technique, but the fre-
quency response shows slight deviations near z = 1 and z = —1 from the desired
one. This is due to the z~! in the FF/FB branch. It is possible to implement ty-
pical audio filters with only a feed forward structure. The complete decoupling of
the control parameters is possible for the boost case, but there remains a coupling
between bandwidth and gain factor for the cut case. In the following, two approa-
ches for parametric audio filter structures based on an all-pass decomposition of
the transfer function will be discussed.

Regalia filter [Reg87]. The denormalized transfer function of a first-order
shelving filter is given by

s+ Vowc
H(s) = ———— 2
(5) = 2 (5.20
with
H0) = W
H(cc) = 1.
A decomposition of (5.20) leads to
s w
H(s) = . 21
(5) s+wc+vos+wC (5.21)

The low-pass and high-pass transfer functions in (5.21) can be expressed by an
all-pass decomposition of the form

s 1 s — We

= -1 .22
s+ we 2[+s+wc} (5.22)

Vi — W,
owe  _ W [1 - “’°] . (5.23)

S + wC 2 s + wC

With the all-pass transfer function

Ap(s) = 22 (5.24)
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for boost, (5.20) can be rewritten as

1 1
H(s) = §[I+AB(S)]+-2-V0[1—AB(8)]. (5.25)
The bilinear transformation s = %Zi leads to
1 1
H(z) = 5[l + Ap(a)] + 3 Vo[l - A(2) (5.26)
with
271+ apB
A =— .
1 — (5.27)
and the frequency parameter
T/2) —
ap = tan(weT/2) - 1 (5.28)

~ tan(w,T/2) + 1

A filter structure for direct implementation of (5.26) is presented in Fig. 5.14a.
Other possible structures can be seen in Fig. 5.14b,c. For the cut case V5 < 1, the
cutoff frequency of the filter moves towards lower frequencies [Reg87].

@ 112

x(n) o

x(n) o——

@ (1-Vp )2
> Az}
x(n)o—9 y(n)
(1+Vp)/2
=X

Figure 5.14 Filter structures by Regalia.
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In order to retain the cutoff frequency for the cut case [Z5195], the denormalized
transfer function of a first-order shelving filter (cut)

S+ we
H(s)= ——— )
(s) s+w./Vo (5.29)
with the boundary conditions
HO0O = W
H(x) = 1
can be decomposed as follows:
s w
H(s) = . )
(s) A + STV (5.30)
With the all-pass decompositions
S 1 § — wC/Vo
—_ = -1+ — 5.31
s +w./ Vo 2 [ s+wc/Vo} (5.31)
We VO s — wc/Vo
—_— = — |l — 5.32
s+ we/Vo 2 { s+wc/Vo] (5.82)
and the all-pass transfer function
s — wC/VO
Ac(s) = ———L— 5.33
C(S) s+ wc/VO ( )
for cut, (5.29) can be rewritten as
1 W
H(s) = 51+ Ac(s)] + 7"[1 — Ac(s)]. (5.34)
The bilinear transformation leads to
1 Vi
H(z) = 5[+ Ac(2)] + 70[1 — Ac(2)] (5.35)
with .
_ _* tac
Ac(z) = Tppp— (5.36)
and the frequency parameter
_ tan(w T/2) - W (5.37)

ac = tan{w,T/2) + V5’

Due to (5.35) and (5.26), boost and cut can be implemented with the same filter
structure (see Fig. 5.14). However, it has to be noted that the frequency parameter
ac as in (5.37) for cut depends on the cutoff frequency and gain.
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A second-order peak filter is obtained by a low-pass to high-pass transformation
according to
L2 +d
14+dz—1

For an all-pass as given in (5.27) and (5.36), the second-order all-pass is given by

27t —o =2~ (5.38)

272+ d(1 +apc)z” ! + apc
A = :
BC(Z) 1+d(1 + aBC)z—l + aBCz_2 (5 39)

with parameters (cut as in [Z5195])

d = —cos(f) (5.40)
Vo = H(eM™) (5.41)
S 1 — tan(wpT/2) (5.42)

1+ tan(wsT'/2)

Vo — tan(wpT/2)
= ) 5.43
a Vo + tan(wpT/2) (543)

The center frequency f. is fixed by the parameter d, the bandwidth f, by the
parameters ap and ac and gain by the parameter V}.

Simplified All-pass Decomposition [Z6195]. The transfer function of a
first-order low-frequency shelving filter can be a decomposed as

V;
H(s) = fio—wc
S+ we
= 1+ Hy—= (5.44)
B s + we '
HO S — We
= 1 — - .
+ 5 [1 S+%] (5.45)
with
Vo = H(s=0) (5.46)
Hy = V-1 (5.47)
Vo = 10% (G [dB]). (5.48)

The transfer function (5.45) is composed of a direct branch and a low-pass filter.
The first-order low-pass filter is again implemented by an all-pass decomposition.
Applying the bilinear transformation to (5.45) leads to

Hy

H(z) =1+ 5 [1- A(z)] (5.49)
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with
z7' +ap
A - —_ .

For cut, the following decomposition can be derived:

S+ we
H = — 95.01
(s) st wlVe (5.51)

WC/VO

= 1+(VW-1) — 5.52
Ll 72 (5:52)

Hg

H() S—WC/VO
= 1 ] - — . .

+5 [ H%/VO] (5.53)

The bilinear transformation applied to (5.53) again gives (5.49). The filter structure
is identical for boost and cut. The frequency parameter ap for boost and ac for
cut can be calculated as

_ tan(w.T/2) — 1

@B = tan(w.T/2) + 1 (5:54)
_ tan(w.T/2) - Vo

T Gn(w.T/2) + Y (5.55)

The transfer function of a first-order low-frequency shelving filter can be calculated

as
14+ (1+ape) 2 + (ape + (1+ ape) o)z
H(z) = : (5.56)
1+(J.Bcz"1

With 4,(2) = —A(2) the signal flow chart in Fig. 5.15 shows a first-order
low-pass filter and a first-order low-frequency shelving filter.

first-order LF shelving filter

Ho/2
x{n)o Ai(z) + y(n)

first-order low-pass filter

x(n) » Ai(2) —(JF-®~ y(n)

Figure 5.15 Low-frequency shelving filter and first-order low-pass filter.
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The decomposition of a denormalized transfer function of a first-order high-
frequency shelving filter can be given in the form of

H(s) = M
8§+ we
= 1+ Hy ST o (5.57)
HO 8§ — We
= 14+ — .
+ 5 [1-&-3_‘_%} (5.58)
where
Voo = H(s=o00) (5.59)
Hy = V-1. (5.60)

The transfer function results by adding a high-pass filter to a constant. Applying
the bilinear transformation to (5.58) gives

H(z) =1+ =21+ A(2)] (5.61)
with .
Alz) = —%. (5.62)

For cut, the decomposition can be given by

S+ we

H = — .
L]

= 1 Vo —1) ——— .

+( 0 )S-E-V()wc (5 64)
Hy
Ho S—Vowc

= 14+ — _— .

+ 5 [1+3+V0wc] (5.65)

which in return results in Equation (5.61) after a bilinear transformation. The
boost and cut parameters can be calculated as

tan(w,T/2) — 1
tan(w.T/2) + 1
Wtan{w.T/2) — 1
Wotan(w, T/2) +1°

ap (5.66)

ac (5.67)
The transfer function of a first-order high-frequency shelving filter can then be
written as

1+ (1 — ch)%‘l + (CLBC + (a,BC — 1)%Q)z_l

H(z) = T— : (5.68)
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With A;(z) = —A(2) the signal flow chart in Fig. 5.16 shows a first-order
high-pass filter and a high-frequency shelving filter.

first-order HF shelving filter

Hol2
x(n)o A«(2) y(n)

first-order high-pass filter

X(n) o— Ay(z) —:?—@——q y(n)

Figure 5.16 First-order high-frequency shelving and high-pass filters.

The implementation of a second-order peak filter can be carried out with a low-
pass to high-pass transformation of a first-order shelving filter. But the addition
of a second-order band-pass filter to a constant branch also results in a peak filter.
With the help of an all-pass implementation of a band-pass filter as given by

1
H(z) = S [1 = A(2)] (5.69)
and (d — dag)z! )
_ —ap+ia—dag)z” +2z2~
Aalz) = 1+ (d—dag)z~! —apz~? (5.70)
a second-order peak filter can be expressed as
H
H(z)=1+ 7" [1— Ay(2)]. (5.71)
The bandwidth parameters ag and a¢ for boost and cut are given
tan((.de/z) -1
B tan(wpT/2) + 1 (5:72)
tan(wa/Z) - VO
: 5.7
“c tan(wpyT /2) + Vo (5.73)
The center frequency parameter d and the coeflicient Hy are given by
d = —cos() (5.74)
Vo = H(e%) (5.75)
Hy = W-1 (5.76)

The transfer function of a second-order peak filter results in
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1+ (1 + ch)%Q + d(l — ch)z_l + (_G-BC - (1 + aBC)%Q)z"Z
1+d(1 —apc)z~! —agcz~? '

H(z) =

(56.77)

The signal flow charts for a second-order peak filter and a second-order band-pass
filter are shown in Fig. 5.17.

second-order peak filter

Ho/2
x(n) o Ag(z) —=(F ¥n)

second-order band-pass filter
1/2

Ax(z) —-?‘@—_b y(n)

Figure 5.17 Second-order peak filter and band-pass filter.

A

x(n) e—

The frequency responses for high-frequency, low-frequency shelving and peak
filters are shown in Figs. 5.18, 5.19 and 5.20.

[H(f)I [dB] —
o

220 i PP EAR e S
10! 102 103 104 105
f{Hz) —»

Figure 5.18 Low-frequency first-order shelving filter (G = +18 dB - f. = 20,50,100,1000
Hz).
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IH(f)I [dB] —
o

-15¢

220 T L N A S N Y
10! 102 103 104 105

f[Hz] -

Figure 5.19 First-order high-frequency shelving filter (G = £18 dB - f. = 1,3,5,10,16
kHz).

IH(f)! [dB] —
o

“To! 102 103 104 105
f[Hz] —»

Figure 5.20 Second-order peak filter (G = +18 dB - f.=50,100,1000,3000,10000 Hz -
fo = 100 Hz).

5.1.3 Quantization Effects

The limited word-length for digital recursive filters leads to two different types of
quantization error. The quantization of the coefficients of a digital filter results
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in linear distortion which can be noticed as a deviation from the ideal frequency
response. The quantization of the signal inside a filter structure is responsible
for the maximum dynamic range and determines the noise behavior of the filter.
Owing to rounding operations in a filter structure, round-off noise is produced.
Another effect of the signal quantization is limit cycles. They can be classified as
overflow limit cycles, small-scale limit cycles and limit cycles correlated with the
input signal. Limit cycles are very disturbing owing to their small-band (sinusoidal)
nature. The overflow limit cycles can be avoided by suitable scaling of the input
signal. The effects of other errors mentioned above can be reduced by increasing
the word-lengths of the coeflicient and the state variables of the filter structure.

The noise behavior and coeflicient sensitivity of a filter structure depend on the
topology and the cutoff frequency (position of the poles in the Z-domain) of the
filter. Since common audio filters operate between 20 Hz and 20 kHz at a sampling
rate of 48 kHz, the filter structures are subjected to specially strict criteria with
respect to error behavior. The frequency range for equalizers is between 20 Hz
and 4...6 kHz because the human voice and many musical instruments have their
formants in that frequency region. For given coefficient and signal word-lengths
(like in a digital signal processor), a filter structure with low round-off noise for
audio application can lead to a suitable solution. For this, the following second-
order filter structures are compared.

The basis of the following considerations is the relationship between the coeffi-
cient sensitivity and round-off noise. This was first stated by Fettweis [Fet72]. By
increasing the pole density in a certain region of the z-plane, the coefficient sensi-
tivity and the round-off noise of the filter structure are reduced. Owing to these
improvements, the coefficient word-length as well as signal word-length can be re-
duced. Work in designing digital filters with minimum word-length for coefficients
and state variables was first carried out by Avenhaus [Ave71].

Typical audio filters like high-/low-pass, peak/shelving filters can be described
by the second-order transfer function

ap + alz_1 -+ agz“2

1+ blz_l -+ 522.'*2 '

H(z) = (5.78)
The recursive part of the difference equation which can be derived from the transfer
function (5.78) is considered more closely, since it plays a major role in affecting the
error behavior. Owing to the quantization of the coefficients in the denominator in
(5.78), the distribution of poles in the z-plane is restricted (see Fig. 5.21 for 6 bit
quantization of coefficients). The pole distribution in the second quadrant of the z-
plane is the mirror image of the first quadrant. Figure 5.22 shows a block diagram
of the recursive part. Another equivalent representation of the denominator is
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z-plane

Im{z} —»

-1 -0.5 0 0.5 1
Re{z} —»

Figure 5.21 Direct-form structure - pole distribution (6 bit quantization).

x(n) o y(n)

Figure 5.22 Directi-form structure - block diagram of recursive part.

given by

N(z)
H(z)= . 5.79
(z) 1—-2rcospz—! 41222 (5.79)
Here r is the radius and ¢ the corresponding phase of the complex poles. By
quantizing these parameters, the pole distribution is altered in contrast to the

case where b; and by are quantized as in Equation (5.78).

The state variable structure [Mul76, Bom85] is based on the approach by Gold
and Rader [Gol67], which is given by

N(z)

H(z) = 1 - 2Re{ze0}z7 ! + (Re{ze0 }2 + Im{200}2) 272"

(5.80)

The possible pole locations are shown in Fig. 5.23 for 6 bit quantization (block
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diagram of recursive part is shown in Fig. 5.24). Owing to the quantization of

z-plane

Im{z} —

I

-1 -0.5 0 0.5 {
Re{z} —

Figure 5.23 Gold and Rader - pole distribution (6 bit quantization).

o ¥(n)

x(n) z!

-r sin @

Figure 5.24 Gold and Rader - block diagram of recursive part.

real and imaginary parts, a uniform grid of different pole locations results. In
contrast to direct quantization of the coeflicients b; und b; in the denominator,
the quantization of the real and imaginary parts leads to an increase in the pole
density at z = 1. The possible pole locations in the second quadrant in the z-plane
are the mirror images of the ones in the first quadrant.

In [Kin72] a filter structure is suggested which has a pole distribution as shown
in Fig. 5.25 (block diagram of recursive part see Fig. 5.26).

The corresponding transfer function

N(z)

T1- (2= kyko — k2=t 4+ (1 — kyka)z=2 (5.81)

H(z)
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Im{z} —»

'-1 0.5 0 0.5 1

Re{z} —»

Figure 5.25 Kingsbury - pole distribution (6 bit quantization).

© y(n)

Figure 5.26 Kingsbury - block diagram of recursive part.

shows that in this case the coefficients b; and b, can be obtained by a linear
combination of the quantized coeflicients k; and k2. The distance d of the pole
from the point z = 1 determines the coeflicients

ki = d=+/1-2rcosp+r? (5.82)
—
ky = (5.83)
k1

as illustrated in Fig. 5.27.

The filter structures under consideration showed that by a suitable linear com-
bination of quantized coeflicients, any desired pole distribution can be obtained.
An increase of the pole density at z = 1 can be achieved by influencing the linear
relationship between the coefficient &, and the distance d from z = 1 [Z5189]. The
nonlinear relationship of the new coeflicients gives the following structure with the
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Im{z}

AN,

Figure 5.27 Geometric interpretation.

transfer function

B N(z)
T 1= (2-z1z2 — 23)2z 7 + (1 — 2129) 272

H(z) (5.84)

and coefficients

21 = \3/ 1+b1 +bs (585)

1—b,
w = (5.86)
with
2 = Vd?. (5.87)

The pole distribution of this structure is shown in Fig. 5.28. The block diagram
of the recursive part is illustrated in Fig. 5.29. The increase in the pole density
at z = 1 in contrast to previous pole distributions is noticed. The pole distribu-
tions of the Kingsbury and Zoélzer structures show a decrease in the pole density
for higher frequencies. For the pole density, a symmetry with respect to the ima-
ginary axis as in the case of the direct-form structure and the Gold and Rader
structure is not possible. But changing the sign in the recursive part of the dif-
ference equation results in a mirror image of the pole density. The mirror image
can be achieved through a change of sign in the denominator polynomial. The
denominator polynomial
!

-1

D(z) (2= 2129 — 23)27 1 + (1 = 2129) 272 (5.88)

shows that the real part depends on the coefficient of z71.

Analytical Comparison of Noise Behavior of Different Filter Structures

In this section, recursive filter structures are analyzed in terms of their noise be-
havior in fixed-point arithmetic [Z6189, Z5194]. The block diagrams provide the
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Im{z} —

Re{z) —

Figure 5.28 Zolzer - pole distribution (6 bit quantization).

x(n) >+ + >(+) 27! ° y(n)

Zq Zq

Figure 5.29 Zolzer - block diagram of recursive part.

basis of an analytical calculation of noise power owing to the quantization of state
variables. First of all, the general case is considered in which quantization is per-
formed after multiplication. For this purpose, the transfer function G;(z) of every
multiplier output to the output of the filter structure is determined.

For this error analysis it is assumed that the signal within the filter structure
covers the whole dynamic range so that the quantization error e;(n) is not corre-
lated with the signal. Consecutive quantization error samples are not correlated
with each other so that a uniform power density spectrum results [Sri77, Schii94].
It can also be assumed that different quantization errors e;(n) are uncorrelated
within the filter structure. Owing to the uniform distribution of the quantization
error, the variance can be given by

2
2 @
0 = 13- (5.89)
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The quantization error is added at every point of quantization and is filtered by
the corresponding transfer function G(z) to the output of the filter. The variance
of the output quantization noise (due to the noise source e(n)) is given by

o2, =0t f G(2)G(z~) 2 dz. (5.90)

Exact solutions for the ring integral (5.90) can be found in [Jur64] for transfer
functions up to the fourth order. With the Lo norm of a periodic function

2

1Glla= | 5= [ 1G(e™)Pan (5:91)

the superposition of the noise variances leads with (5.91) to the total output noise
variance

e =02 3 N Gilly - (5.92)
The signal-to-noise ratio (SNR) for a full-range sinusoid can be written as
0.
SNR = 1010g, 2 By, (5.93)
ye
The ring integral
(2)A(z L1
94
In 211'] B (z)B(z dz (5.94)
=il
is given in [Jur64] for first-order systems by
oz +
0 T 5.95
G) boz + by (5.99)
2 4 2 2\he
Il (GO + al)bo 2a0albl (596)

bo (b3 — b7)
and for second-order systems by

a0z2 + a1z +az
Glz) = boz? + byz + by (5.97)
Agbgcy — Ayboby + AQ(b% — bgCl)
bo[(b3 — b2)cy — (boby — b1bo)by]
Ay = ai+al+al (5.99

)
Ay = 2(apa +a1ay) (5.100)
)
)

IQ'—"-—

A2 = 2&0(12 (5.101
c; = bo+b2. (5102
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In the following, an analysis of the noise behavior for different recursive filter
structures will be made. The noise transfer functions of individual recursive parts
are responsible for noise shaping.

The error transfer function of a second-order direct-form structure (see Fig.
5.30) has only complex poles (see Table 5.5).

e (n) +e,(n)
X(n) _‘q'ig T ¥(n)
-1
-by
D—Q—
21

Figure 5.30 Direct-form with additive error signal.

Table 5.5 Direct-form - a) noise transfer function, b) quadratic L, norm and ¢) output
noise variance in the case of quantization after every multiplication.

2
z
a) Gl(z) = Gz(z) = z2—+_bl—z+—b2
. 1+ 1
) [ IGiE = 162l = 175 o=
1
on 1+ b2 1
2 _ 2
| T =, T ) B

The implementation of poles near the unit circle leads to high amplification
of the quantization error. The effect of the pole radius on the noise variance can
be observed in the equation for output noise variance. The coefficient by = r2

approaches 1 leading to a huge increase in the cutput noise variance.

The Gold and Rader filter structure (Fig. 5.31) has an output noise variance
that depends on the pole radius (see Table 5.6) and is independent of the pole
phase. The latter fact is because of the uniform grid of the pole distribution. An
additional zero on the real axis (z = rcosg) directly beneath the poles reduces
the effect of the complex poles.
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e, (n)+ e2(n) e,n}+ e4(n)

o y{(n)

x(n) 2

-r sin ¢

&

Figure 5.31 Gold and Rader structure with additive error signals.

Table 5.6 Gold and Rader - a) noise transfer function, b) quadratic Lz norm aad c)
output noise variance in the case of quantization after every multiplication.

. _ 7 sin @
Gi(z) = Go(2) = 22 — 21 COS pz + T2
a)
B _ Z—TCos
Gs(z) = Galz) = 22 — 2rcos pz + 12
. ‘ 1+b2 (rsinp)?
2 _ 2 _
1Gil = [Gally = [ et
b) :
2 . 1 [1+ (rsin)?|(1 + by)? — b3
[Gall = el = g5 TR
1
c) | o2, = 0321 —

The Kingsbury filter (Fig. 5.32 and Table 5.7) and the Zoélzer filter (Fig. 5.33
and Table 5.8), which is derived from it, show that the noise variance depends on
the pole radius. The noise transfer functions have a zero at z = 1 in addition to
the complex poles. This zero reduces the amplifying effect of the pole near the unit

circle at z = 1.
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- y(n)

Figure 5.32 Kingsbury structure with additive error signals.

Table 5.7 Kingsbury - a) noise transfer function, b) quadratic L, norm and c) output
noise variance in the case of quantization after every multiplication.

x(n)

—klz
G ==
1(2) 22— (2 — kiks — k2)z + (1 — k1k2)
—ki(z - 1)
G = -
a) 2(2) 22— (2= kikz — k2)z + (1 — k1k2)
z—1
Gs(z) = 22— (2 — kiks — k¥)z + (1 — kik2)
2 _ 1 2 —klkz
1e:e = 630 —Fks) — &2
k 2
2 _ M
by | el = e ey~ e
1 2
2 _
1Gsllz = kiks 2(2 — kika) — k%
2 9 5+ 2by + 3bs
C) Uye—ae2(1—b2)(1+b2—bl)

ein)

e, m+e () e,

+ | 27

Zy Zy

24

Z2

— y(n)

Figure 5.33 Zélzer structure with additive error signals.
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Table 5.8 Zolzer - a) noise transfer function, b) quadratic L2 norm and c) output noise
variance in the case of quantization after every multiplication.

i) B —z%z
1 22— (2—zz— 23z + (1 — 2122)
_ B —z1(z — 1)
a) Ga(z) = Gs(z) = 22— (2—z12z2 — 2)z+ (1 — z122)
z—1
G =
(@) e PR Gy
4
2— 2120
G112 = =
G Iz z122 223 (2 — z122) — 20
b) | IGall = Gally = L :
Az s T 2 223 (2 — z122) — 29
3
2
G2 ==
|| 4”2 2129 22?(2 - 2122) - Z?
c) | o2, = 0226 +4(b1 +b2) + (1+b2)(1 + by +b2)"/°
ye — Te (1 =b2)(1+ b2 —b1)

Figure 5.34 shows the signal-to-noise ratio versus the cutoff frequency for the
four filter structures presented above. The signals are quantized to 16 bit. Here,

SNR [dB] 4

100 A
Zolzer _Kingsbury

80 A

60 A

40 -

20 17

0 : : v . . ; r . — f[Hz]
20 40 60 80 100 120 140 160 180 200

Figure 5.34 SNR vs. cutoff frequency - quantization of products (f. < 200 Hz).

the poles move with increasing cutoff frequency on the curve characterized by the
Q-factor Qoo = 0.7071 in the z-plane. For very small cutoff frequencies, the Zdlzer
filter shows an improvement of 3 dB in terms of signal-to-noise ratio compared
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SNR [dB]

100 4 Zdlzer
Kingsbury Gold and Rader

hd B i

90

g0 4
70 -

60 A

50 . . . v — f[Hz]
2k 4k 6k 8k 10k 12k

Figure 5.35 SNR vs. cutoff frequency - quantization of products (f. > 2 kHz).

with the Kingsbury filter and an improvement of 6 dB compared with the Gold
and Rader filter. Up to 5 kHz, the Zolzer filter yields better results (see Fig. 5.35).
From 6 kHz onwards, the reduction of pole density in this filter leads to a decrease
in the signal-to-noise ratio (see Fig. 5.35).

With regard to the implementation of the these filters with digital signal pro-
cessors a quantization after every multiplication is not necessary. QQuantization
takes place when the accumulator has to be stored to memory. This can be seen in
Figs. 5.36, 5.37, 5.38 and 5.39 by introducing quantizers where they really occur.
The resulting output noise variances are also shown. The signal-to-noise ratio is

o y{n}

2 21+b2 1

Tve =T b, (1 + ba)? — b2

Figure 5.36 Direct-form filter - quantization after accumulator.

plotted versus the cutoff frequency in Figs. 5.40 and 5.41. In the case of direct-form
and Gold and Rader filters, the signal-to-noise ratio increases by 3 dB whereas the
output noise variance for the Kingsbury filter remains unchanged. The Kingsbury
filter and the Gold and Rader filters exhibit similar results up to a frequency of
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—o y(n)

x(n) =+ Q +)—Q Qb z7! W—oy(n)

2 g2 54 2by + 3by
“(1—bg)(1+b2—by)

ye

Figure 5.38 Kingsbury filter - quantization after accumulator.

—o y(n)

s _ 22024 by +by) + (1+b3)(1 4 by + b)!/®

ye = e (1= bg)(1+ bz — b1)

Figure 5.39 Zolzer filter - quantization after accumulator.

147

200 kHz (see Fig. 5.40). The Zdlzer filter demonstrates an improvement of 3 dB
compared with these structures. For frequencies of up to 2 kHz (see Fig. 5.41) it is
seen that the increased pole density leads to an improvement of the signal-to-noise

ratio as well as a reduced effect due to coefficient quantization.
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SNR [dB] ¢
100

80 1 — T — Gold and Rader
Kingsbury

60 A

40 | et k:

Direct-form

20 {°

0 . , . - . . . , — [Hz)
20 40 60 80 100 120 140 160 180 200

Figure 5.40 SNR vs. cutoff frequency - quantization after accumulator (f. < 200 Hz).

SNR [d8]
100 1 Zdlzer Gold and Rader

90 1 e “*~—_ Direct-form
80 A
70 1

60 1

50 . . ' . —— {[HZ]
2k 4k 6k 8k 10k 12k

Figure 5.41 SNR vs. cutoff frequency - quantization after accumulator (f. > 2 kHz).

Noise Shaping in Recursive Filters

The analysis of the noise transfer function of different structures shows that for
three structures with low round-off noise a zero at z = 1 occurs in the transfer
functions G(z) of the error signals in addition to the complex poles. This zero
near the poles reduces the amplifying effect of the pole. If it is now possible to
introduce another zero into the noise transfer function then the effect of the poles is
compensated for to a larger extent. The procedure of feeding back the quantization
error as shown in chapter 2 produces an additional zero in the noise transfer
function [Tra77, Cha78, Abu79, Bar82, Z6189]. The feedback of the quantization
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error is first demonstrated with the help of the direct-form structure as shown in
Fig. 5.42. This generates a zero at z = 1 in the noise transfer function given by
1—2z7!1

Gro() = Ty (5.103)

The resulting variance o? of the quantization error at the output of the filter is

A

z-1
2
ah
-
x(n) + Q ¥(n)
21
-b4
¥
2-1
b,
a) b)

02 — 0_2 2
br1 (1 —ba)(1+by—by)
02 — 02 6+2b1 - 21)2
D2 “A—=b)1+b2—by)

Figure 5.42 Direct-form with noise shaping.

presented in Fig. 5.42. In order to produce two zeros at z = 1, the quantization
error is fed back over two delays weighted with 2 and -1 (see Fig. 5.42b). The noise
transfer function is, hence, given by

1-2"1 4 272
N 1+ b1z_1 + ng—Q'

G2.0(z) (5.104)

The signal-to-noise ratio of the direct-form is plotted versus the cutoff frequency
in Fig. 5.43. Even a single zero significantly improves the signal-to-noise ratio in
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SNR [dB]
100
J Direct-form
90 (double zero at z=1)
80 1 e °\Diract-forrn
IPERN (simple zero at z=1)
o ]
|
50 —— r — — — f[HzZ]

20 40 60 80 160 120 140 160 180 200

Figure 5.43 SNR - Noise shaping in direct-form filter structures.

the direct-form. The coeflicients b; and by approach -2 and 1 respectively with
the decrease of the cutoff frequency. With this, the error is filtered with a second-
order high-pass. The introduction of the additional zeros in the noise transfer
function only affects the noise signal of the filter. The input signal is only affected
by the transfer function H(z). If the feedback coefficients are chosen equal to the
coeflicients b; and b in the denominator polynomial, complex zeros are produced
that are identical with the complex poles. The noise transfer function G(z) is
then reduced to unity. The choice of complex zeros directly at the location of the
complex poles corresponds to double-precision arithmetic.

x(n) + ) Q z-1

y(m)

rcosq

Figure 5.44 Gold and Rader filter with noise shaping.

In [Abu79], an improvement of noise behavior for the direct-form in any desi-
red location of the z-plane is achieved by placing additional simple-to-implement
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complex zeros near the poles. For implementing filter algorithms with digital si-
gnal processors, these kinds of suboptimal zero are easily realized. Since the Gold
and Rader, Kingsbury and Zolzer filter structures already have zeros in their re-
spective noise transfer functions, it is sufficient to use a simple feedback for the
quantization error. By virtue of this extension, the block diagrams in Figs. 5.44,
5.45 and 5.46 are obtained.

z'1 z"| 2'1
x(n) +—+)—a = Q >Fr{ab 27! o vin)
ky
kq z-! K,

o2 — g2 (14 E3)((1 + b2)(6 — 2b2) + 267 + 8b1) + 2k3(1 + by + by)
ot (1= bg)(1 + by — bi)(1+bo = by)

Figure 5.45 Kingsbury filter with noise shaping.

Py

—o ¥{n)

5 (1+ Z%)((l + b2)(6 — 2b2) + Qb% + 8by) + 22,"11(1 + by + ba)
(1 —b2)(1+ by —b1)(1+ b2 — 1)

2 _—
aye_ge

Figure 5.46 Zolzer filter with noise shaping.

The effect of noise shaping on signal-to-noise ratio is shown in Figs. 5.47 and
5.48. The almost ideal noise behavior of all filter structures for 16 bit quantization
and very small cutoff frequencies can be observed. The effect of this noise shaping
for increasing cutoff frequencies is shown in Fig. 5.48. The compensating effect of
the two zeros at z = 1 is reduced.
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Figure 5.47 SNR - noise shaping (20 Hz .... 200 Hz).
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Figure 5.48 SNR - noise shaping (200 Hz ... 12 kHaz).

Scaling

In a fixed-point implementation of a digital filter, a transfer function from the
input of the filter to a junction within the filter has to be determined as well as
the transfer function from the input to the output. By scaling the input signal,
it has to be guaranteed that the signals remain within the number range at each

junction or at the output.

In order to calculate scaling coefficients, different criteria can be used. The L,
norm is defined as

L, = ||, = [i /ﬂ |H(em)|"dﬂ]l/p (5.105)

2r | _,
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and an expression for the L, norm follows for p = oo:

Loo = “H(ejn)”oo - Oing?é(le(ejQ)l. (5.106)

The Lo norm represents the maximum of the amplitude frequency response. In
general, the modulus of the output is

ly(n)| < [ H]pI1 X |lg (5.107)
with
1-i~1—1 p,g>1 (5.108)
P q T '

For the L1, Ly and L., norms the explanations in Table 5.9 can be used.

Table 5.9 Commonly used scaling.

Lr | a] |

1 | oo | given max. value of input spectrum

scaling w.r.t. the L, norm of H(e’®)

oo | 1 | given L norm of input spectrum X (e’®)

scaling w.r.t. the Lo norm of H(e’®)

2 2 | given L, norm of input spectrum X (e)

scaling w.r.t. the Lz norm of H(e’®)

With | '
[y (n)] < 1Hi(e™ Mool 1X () 11 (5.109)

the Lo, norm is given by

Loo = [[hilleo = max | hi(k)]. (5.110)

For a sinusoidal input signal of amplitude 1 || X (e7?)||; = 1. For |y;(n)] < 1 to be
valid, the scaling factor must be chosen to be

1

Si=
1 H:(e7)]| oo

(5.111)
The scaling of the input signal is carried out with the maximum of the amplitude
frequency response with the goal that for |z(n)] < 1, |y:(n)| < 1. As a scaling coef-
ficient for the input signal the highest scaling factor S; is chosen. For determining
the maximum of the transfer function

1H (&)loo = max [H(e'™)] (5.112)
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of a second-order system

ag+ a1z27t + agz7!

1+ blz_l + bzz_l
a0z2 + a1z + as
z? 4+ biz + by

H{(z)

the maximum value can be calculated as

ag ol o2
—~ = —_— N2 2
aoas cos?(Q) + ay{ao + az) cos(9) + (ap — a2)” + aj
'H(ejﬂ)ll — b2 2b2 4b2 _ 82
b . —-b 2 2 - ’
cos?(f)) + ———1(1 + ba) cos(§2) + ——(1 2)” + b
2bs 469
e ——’
B Bz
(5.113)
With 2 = cos() it follows that
(S? — ap)z® + (A1S* — a1)z + (B25% — ap) = 0. (5.114)

The solution of the Equation (5.114) leads to x = c0S(Qnqa/min) Which must be
real (=1 <z < 1) for the maximum/minimum to occur at a real frequency. For a
single solution (repeated roots) of the above quadratic equation, the discriminant
must be D = (p/2)? — ¢ =0 (2% + pz + ¢ = 0). It follows that

_(BiS* — 1) BS’ -

D=
4(52 — aq)? S2 — ag

-0 (5.115)

and
Sq(/@f - 4,32) + 82(4012 + dap B — 2a161) + (af — 4a0a2) =0. (5.116)

The solution of (5.116) gives two solutions for S2. The solution with the larger
value is chosen. If the discriminant D is not greater than zero, the maximum lies
atz=1(z=1)orz=-1(z=-1) as given by

Gg + a1 + as

S? =
1+ 51 + B2

(5.117)

or
g — 1 + 9

S? = )
1-51+ B2

(5.118)
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Limit Cycles

Limit cycles are periodic processes in a filter which can be measured as sinusoidal
signals. They arise owing to the quantization of state variables. The different types
of limit cycle and the methods necessary to prevent them are briefly listed below:

e overflow limit cycles
— saturation curve

— scaling

¢ limit cycles for vanishing input
— noise shaping

— dithering

e limit cycles correlated with the input signal
— noise shaping

— dithering

5.2 Nonrecursive Audio Filters

For implementing linear phase audio filters, nonrecursive filters are used. The basis
of an efficient implementation is the fast convolution (Rab75, Kam89] which will
be discussed in the first section. The filter design is carried out by sampling a
prescribed amplitude frequency response and linear phase constraints.

5.2.1 Fast Convolution

IDFT Implementation with DFT Algorithm. The discrete Fourier Transfor-
mation (DFT) is described by

N-1

X(k) = ) z(n)WFF =DFTi[z(n)] (5.119)
n=0

Wy = e 92/N (5.120)

and the inverse discrete Fourier Transformation (IDFT) by

N-1
z(n) = % Y X (KYWy™*. (5.121)
k=0
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Without scaling factor 1/NV we write

N-—
z'(n) = ) X(k)Wy™ = IDFT,[X (k)] (5.122)
k=0

—

so that the following symmetrical transformation algorithms hold

X'(k) = LN—lx(n)W“" (5.123)
ﬁ n=0 v '

(n) = LN—IX'(k)W-”k (5.124)
z(n) = Vi 2 N .

The IDFT differs from the DFT only by its sign in the exponential term.

An alternative approach for calculating the IDFT with the help of a DFT is
described as follows [Cad87, Duh88]. We will make use of the relationships

z(n) = a(n)+j-b(n) (5.125)
j-z*(n) = b(n)+7-a(n). (5.126)
Conjugating (5.122) gives
N—1
o (n) = 3 X*(k)WgE. (5.127)
k=0

The multiplication of (5.127) by j leads to

N-—

jrrtn) =Y 5 X (HWE. (5.128)
k=0

—

Conjugating and multiplying (5.128) by j results in
N—1 *
'(n)=7- [Z(] . X*(k)W;}k} i (5.129)
k=0

An interpretation of (5.126) and (5.129) suggests the following way of performing
the IDFT with the DEFT algorithm:

1. exchange the real with the imaginary part of the spectral sequence

Y(k) = Yi(k) + jYr(K)
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2. transformation with DF'T algorithm
DFT[Y (k)] = y1(n) + jyr(n)
3. exchange the real with the imaginary part of the time sequence
y(n) =yr(n) + jyi(n)

For implementation on a digital signal processor, the use of DFT saves memory
for IDFT.

Discrete Fourier Transformation of two Real Sequences. In many app-
lications, stereo signals that consist of a left and right channel are processed. With
the help of the DFT, both channels can be transformed simultaneously into the
frequency domain [Sor87, Ell82).

For a real sequence z(n) follows

X(k) = X*(-k) k=0,1,...,N—-1 (5.130)
= X*(N—-k). (5.131)

For a discrete Fourier transformation of two real sequences z(n) and y(n), a com-
plex sequence is first formed according to

z(n) = z(n) + jy(n). (5.132)

The Fourier transformation gives

DFT[z2(n)] = DFT[z(n)+ jy(n)
= Zgp(k)+37Z;(k) (5.133)
= Z(k), (5.134)
where
Z(k) = Zg(k)+35Zi(k) (5.135)
Xr(k) + 3 Xr(k) + j[YR(K) + jYI(K)] (5.136)
= Xg(k) - Y7(k) + j[X (k) + YR(K)]. (5.137)

Since z(n) and y(n) are real sequences, it follows from (5.131) that

Z(N-k) = Zp(N—k)+3iZi(N~k)=2%(k) (5.138)
= Xg(k) - X1 (k) + j[YR(E) - Y7(k)] (5.139)
= Xg(k) + Yi(k) = j[X1(k) - Ya(k)]. (5.140)
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Considering the real part of Z(k), adding (5.137) and (5.140) gives

2XR(k) = ZR(.IC) + ZR(N — k)
1

Y XR(k) = i[ZR(k) + ZR(N - k)]

and subtraction of Equation (5.140) from (5.137) results in

2Yi(k) = Zr(N —k) - Zgr(k)

SOV = %[ZR(N — k) = Zalk)].

5 Fqualizers

(5.141)
(5.142)

(5.143)
(5.144)

Considering the imaginary part of Z(k), adding (5.137) and (5.140) gives

2Yr(k) = Zi(k)+ Zi/(N - k)
S Y(k) = %[Z,(k) + Z(N = k)]

and subtraction of Equation (5.140) from (5.137) results in

2X1(k) = Zi(k)—Z/(N ~k)
S OXi(k) = %[Z,(k) ~ ZiN - K)].

Hence the spectral functions are given by
X (k) =DFT[z(n)] = Xg(k)+jXi(k)
1
= S(Zn(k) + Zr(N - )]

+j%[Z1(k) — Z1(N - k)]

N
k = 0, 1, ceay E—
Y(k) = DFT[y(n)] = Yr(k)+jYr(k)
1

= 2[ZI(If:) + Z;(N - k)]

+73(Zr (N = k) = Za(k)

N
k=0,1,..., =
O) ’ ?2

and

Xpk)+7iXi(k) = Xp(N—-k)—jX;(N-k)

(5.145)
(5.146)

(5.147)
(5.148)

(5.149)

(5.150)

(5.151)

(5.152)

(5.153)
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Yr(k)+ 3Yi(k) = Ygp(N —k)—j3Y;(N -k) (5.154)
k= E+1,...,N—1.

2

Fast Convolution if Spectral Functions are Known. The spectral func-
tions X (k), Y (k) and H(k) are known. With the help of (5.137), the spectral
sequence can be formed by

Z(k) = Zr(k)+5Z1(k) (5.155)
= Xr(k) - Yi(k) + 41X (k) + Yr(k)] (5.156)

k=0,1,...,N — 1.
Filtering is done by multiplication in the frequency domain:

Z'(k) = [Zr(k)+3Zi(k)|[Hr(K) + jH (k)]
= Zr(k)Hg(k) — Z1(k)H(k)
+3[Zr(k)H (k) + Z1(k)HR(K)]. (5.157)

The inverse transformation gives

Z(n) = [z(n) +jy(n)] * k(n) = z(n) * h(n) + jy(n) x h(n)  (5.158)
= IDFTI[Z'(k)]
= zh(n) +jzi(n), (5.159)

so that the filtered output sequence is given by
z'(n) = zg(n) (5.160)
v(n) = zi(n). (5.161)
The filtering of a stereo signal can hence be done by transformation into the

frequency domain, multiplication of the spectral functions and inverse transforma-
tion of left and right channels.

5.2.2 Fast Convolution of Long Sequences
The fast convolution of two real input sequences x;(n) and z;4;(n) of length N,

with the impulse response h(n) of length N, leads to the output sequences

y(n) = xz(n)* hin) (5.162)
yi+1(n) = @p1(n) x h(n) (5.163)
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of length Ny, + Ny — 1. The implementation of a nonrecursive filter with fast
convolution becomes more efficient than the direct implementation of an FIR filter
for filter lengths N > 30 [Rab75, Kam89]. Therefore the following procedure will
be performed:

e Formation of a complex sequence

z(n) = zi(n) + jxi1 (n) (5.164)

Fourier transformation of the impulse response h(n) that is padded with
zeros to a length N > Ny + N — 1

H(k) = DFT[h(n)] (FFT-length N) (5.165)

Fourier transformation of the sequence z(n) that is padded with zeros to a
length N > N} + Ny — 1

Z(k) = DFT[z(n)] (FFT-length N) (5.166)

Formation of a complex output sequence

e(n) = IDFT[Z(k)H(k)] (5.167)
= z(n)* h(n) (5.168)
= @(n) *x h(n) + jzi41(n) * h(n) (5.169)
¢ Formation of a real output sequence
yi(n) = Re{e(n)} (5.170)
yir1(n) = Im{e(n)}. (5.171)

For the convolution of an infinite-length input sequence with an impulse re-
sponse h(n), the input sequence is partitioned into sequences z,(n) of length L:

z(n) (m—1)L<n<mL-1

Tm(n) = {0 otherwise (5.172)

The input sequence is given by superposition of finite-length sequences according
to

z(n) =) zm(n). (5.173)
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The convolution of the input sequence with the impulse response h(n) of length
M gives

M-1
y(n) = h(k)x(n — k) (5.174)
k=0
M-1 0
= (k) Y @m(n - k) (5.175)
k=0 m=1
o0 M-1
= Y [ h(k)Zp (n — k)} . (5.176)
m=1 L k=0

The term in brackets corresponds to the convolution of a finite-length sequence
ZTm(n) of length L with the impulse response of length M. The output signal can
be given as superposition of convolution products of length L + M — 1. With these
partial convolution products

y(n) = { 2 M k)T (n — k) gﬁ;gsfés n<mL+M-2
(5.177)
the output signal can be written as
o
y(n) =3 ym(n). (5.178)

m=1

If the length M of the impulse response is very long, it can be similarly partitioned
into P parts each of length AM/P. With

My _ [ hn) (-1DF<n<ppE-1

hp(n = (p = I)F) N { 0 otherwise (5.179)
it follows that
r M

h(n) =p;hp (n— (p— 1)?) (5.180)

With M, = pM/P and (5.178) the following partitioning can be done

o rM-1
yn) = | Y h(k)zm(n - k)} (5.181)
m=1 ka_—_o |,
ym\zn)

M -1 Maz—1

= > L > WE)zm(n—k)+ Y h(k)zm(n—k)+...
k=0 k

=M,

3
,I_].
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+ > h(k)a:m(n—k)]. (5.182)

This can be rewritten as

[e,0] A’[] 1 Ml—l
= 2 [ Z B)am(n —k)+ > ho(k)em(n — My — k)
k=0

m=1
e Yo
M;—-1
+ Y ha(k)zm(n — 2My — k)
Y3
i‘ll—-l

ot > hp(R)zn(n— (P - 1)M; — k)

o

-~

YmPpP

> [Ym1(n) + Yma(n = M1) + ... + Yrp(n — (P = 1)M)))].

Ym (1)

(5.183)

An example of partitioning the impulse response into P = 4 parts is graphically
shown in Fig. 5.49. This leads to

Ml 1 1\’[1—1

y(n) = Z [ Z k), (n— k) + Z ha(k)zm(n — My — k)

m=1 k=0 k=0

Ym1 Ym2

My—1
+ Z hs (k)@ (n — 2My — k) + > hu(k)Tm(n — 3M; — k)
k=0

—

— -

Ym3 Yma4

= Z[yml +ym2(n—M1)+ym3(n—2Ml)+ym4(n—3M1)]

 —

Jm(n)

(5.184)

The procedure of a fast convolution by partitioning the input sequence z(n) as
well as the impulse response h(n) is given in the following for the example in Fig,

5.49.
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Figure 5.49 Scheme for a fast convolution with P = 4.

1. Decomposition of the impulse response h(n) of length 4M:

hi(n)

hao(n — M)
hs{n — 2M)
ha(n — 3M)

2. Zero-padding of partial impulse responses up to a length 2M:

h] (TL)

Il

{

—_—— N

h

1(n)

0<n<M-1

M<n<2M -1
2M <n<3M -1
3IM <n<4M -1

0<n<M-1
M<n<2M -1
0<n<M-1
M<n<2M -1
0<n<M-1
M<n<2M -1
0<n<M-1

M<n<2M-1
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Calculating and storing

Hi(k) = DFT{h;(n)] i=1,...,4 (FFT-length 2) (5.193)

. Decomposition of the input sequence z(n) into partial sequences z;(n) of

length M:

zi(n) = xz(n) (I-1)M<n<IM-1 1=1,...00 (5.194)

Nesting partial sequences:

zm(n) = z(n)+jzipa(n) myl=1,...,00 (5.195)

Zero-padding of complex sequence z,(n) up to a length 2M:

tm(n) = {zm(m (- )M <n<IM-1

0 IM<n<(+1)M-1 (5.196)

Fourier transformation of the complex sequences z,,(n):

Zm(k) = DFT[2m(n)] = Zmr(k) + jZmi(k) (FFT-length 2M) (5.197)

Multiplication in the frequency domain:

[Zr(k) + 7 Z1(K)|[HRr(Kk) + jHI(K)] =
Zp(k)Hg(k) — Z1(k)H (k)

+j(Zr(k)H (k) + Z1(k)Hp (k)] (5.198)
Em(k) = Zn(k)H (k) k=0,1,...,2M -1 (5.199)
Ema(k) Zm(k)Hy(k) k=0,1,...,2M -1 (5.200)
Epms (k) Zm(k)H3(k) k=0,1,...,2M — 1 (5.201)
Emi(k) = Zm(kK)Hy(k) k=0,1,...,2M —1 (5.202)

emi(n) = IDFT[Zm(k)H\ (k)] n=0,1,....2M -1 (5.203)
ema(n) IDFT{Z(k)Hy(k)] n=0,1,...,2M -1 (5.204)
em3(n) IDFT[Zm(k)H3(k)] n=0,1,...,2M =1  (5.205)
emi(n) = IDFT[Zn(k)Hy(k)] n=0,1,....,2M -1 (5.206)
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10. Determination of partial convolutions:

Re{emi(n)} = =z +h (5.207)
Im{emi(n)} = x4 %l (5.208)
Re{ema(n)} = z*hy (5.209)
Im{ena(n)} = 41 % ho (5.210)
Re{emz(n)} = xzixhg (5.211)
Im{en3(n)} = x4 *h3 (5.212)
Re{ema(n)} = xz;xhy (5.213)
Im{ens(n)} = zy1%hy (5.214)

11. Overlap-Add of partial sequences, increment from [ ={+2and m =m + 1
and back to step 5.

5.2.3 Filter Design by Frequency Sampling

Audio filter design for nonrecursive filter realizations by fast convolution can be
carried out by the frequency sampling method [Opp75, Rab75]. For linear phase
systems follows

H(e®) = Ho(e#)e 7759, (5.215)

where Ho(ejQ) is a real valued function and N is the length of the impulse re-
sponse. The magnitude | H (/)| is calculated by sampling in the frequency domain
at equidistant places

k
f_ v vith k=01 Np-1 (5.216)

according to

) y N
H(®)| = Ho(e2™/NF)  k=0,1,.., =5

- 1. 21
: (5.217)

Hence, a filter can be designed by fulfilling conditions in the frequency domain.
The linear phase is determined as

e_jN?-_lQ = e—jZWNZ_lﬁ (5.218)
Np—-1k Ng—1 k
= cos(2m F2 &) —dsin(2 F2 o) (5.219)
Ir F
F=0,1,., 28 4
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Owing to the real transfer function H(z) for au even filter length, we have to fulfill

H(k = =

)=0 (5.220)

and N
H(k) = H*(Ng — k) k:O,l,...7F - 1. (5.221)

This has to be taken into consideration while designing filters of even length Ng.
The impulse response h(n) is obtained through an Ng-point IDFT of the spec-
tral sequence H (k). This impulse response is extended with Zero-padding [Rab75,
Cad87, Kam89] to the length N and then transformed by an N-point DFT resul-
ting in the spectral sequence H (k) of the filter.

Example: For Np =8, |H(k)| =1 (k =0,1,2,3,5,6,7) and [H(4)] = 0, the
group delay is iz = 3.5. Figure 5.50 shows the amplitude, real part and imaginary
part of the transfer function and the impulse response h(n).

Magnitude IH‘(k)I Re{H(k)}
1+ .
1E 4
05 [~ N 0 r ’ | \ ' =
OF . n |
0 5 0 5
k -> k->
i Impulse response h(n) ' Im{H(k)}
1 J
0.5+ .
ok i
ol — 4
1k 4
0 5 0 5
n-> k->

Figure 5.50 Filter design by frequency sampling (Nr even).
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5.3 Multi-complementary Filter Bank

The subband processing of audio signals is mainly used in source coding appli-
cations for efficient transmission and storing. The basis for the subband decom-
position is critically sampled filter banks [Vai93, Fl1i94]. These filter banks allow
a perfect reconstruction of the input provided there is no processing within the
subbands. They consist of an analysis filter bank for decomposing the signal in cri-
tically sampled subbands and a synthesis filter bank for reconstructing the broad-
band output. The aliasing in the subbands is eliminated by the synthesis filter
bank. Nonlinear methods are used for coding the subband signals. The recon-
struction error of the filter bank is negligible compared with the errors due to the
coding/decoding process. Using a critically sampled filter bank as a multi-band
equalizer, multi-band dynamic range control or multi-band room simulation, the
processing in the subbands leads to aliasing at the output. In order to avoid ali-
asing, a multi-complementary filter bank {F1i92, Z5192, F1i93] is presented which
enables an aliasing-free processing in the subbands and leads to a perfect recon-
struction of the output. It allows a decomposition into octave frequency bands
which are matched to the human ear.

5.3.1 Principles

Figure 5.51 shows an octave-band filter bank with critical sampling. It performs
a successive low-pass/high-pass decomposition into half-bands followed by down-

x{n) o

Figure 5.51 Octave-band QMF filter bank (SP = signal processing, LP = low-pass, HP
= high-pass).

sampling by a factor 2. The decomposition leads to the subbands Yj to Yy (see
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[Hei| T - -
Y S Y, >< Y,
-- —— —t— —— )
8 /2

Q¢y, = n/4 n

Figure 5.52 Octave-frequency bands.

Fig. 5.52). The transition frequencies of this decomposition are given by

Ocp = _’zfz—kﬂ with k=1,2,---,N—1. (5.222)

In order to avoid aliasing in subbands, a modified octave-band filter bank is consi-
dered which is shown in Fig. 5.53 for a 2-band decomposition. The cutoff frequency

IHeio)(t MCF
_________ N R ———
>(\/ QmF
P
T T T Y [e]
/3 n2  2n3 n

Figure 5.53 2-band decomposition.

of the modified filter bank is moved from 7 to a lower frequency. This means, that
in downsampling the low-pass branch, no aliasing occurs in the transition band
(e.g. cutoff frequency % ). The broader high-pass branch cannot be downsampled. A
continuation of the described 2-band decomposition leads to the modified octave-
band filter bank shown in Fig. 5.54. The frequency bands are depicted in Fig. 5.55
showing that besides the cutoff frequencies

Qcr = gz—k“ with k=1,2,---,N 1 (5.223)

the bandwidth of the subbands is reduced by a factor 2. The high-pass subband
Y1 is an exception.

y(n) e

Figure 5.54 Modified octave-band filter bank.
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Figure 5.55 Modified octave decomposition.

The special low-pass/high-pass decomposition is carried out by a 2-band com-
plementary filter bank as shown in Fig. 5.56. The frequency responses of a deci-
mation filter Hp(z), interpolation filter Hy(z) and kernel filter Hx (z) are shown
in Fig. 5.57.

Figure 5.56 2-band complementary filter bank.

|H(ei Q)| fmmmmm oot ~ Hi)
W@ S @)

t t — (0
n/3 r/2 2773 n

Figure 5.57 Design of Hp(2), Hi(z) and Hk(z).

The low-pass filtering of a signal z;(n) is done with the help of a decimation
filter Hp(z), the downsampler of factor 2 and the kernel filter Hg (z) and leads to
y2(2n). The Z-transform of y2(2n) is given by

B = 3Hp(H) X4 Hk ()
+Hp(—27) X, (—27)Hg (2)). (5.224)

The interpolated low-pass signal y;1(n) is generated by upsampling by a factor
2 and filtering with the interpolation filter H;(z). The Z-transform of y,(n) is
given by

Yir(z) = Yo(22)Hi(2) (5.225)
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+ =Hp(—2)Hi(2)Hy (2*) X, (—2). (5.226)

The high-pass signal y;(n) is obtained by subtracting the interpolated low-pass
signal y;1(n) from the delayed input signal z;(n — D). The Z-transform of the
high-pass signal is given by

Yi(z) = z7PX1(2) - Yir(2) (5.227)
= [27P = G1()]X1(2) = Ga(2) X1 (~2). (5.228)

The low-pass and high-pass signals are processed individually. The output signal
#1(n) is formed by adding the high-pass signal to the upsampled and filtered low-
pass signal. With (5.226) and (5.228) the Z-transform of Z;(n) can be written
as

X1(2) =Yi(2) + Y1(2) = 7P X, (2) (5.229)

Equation (5.229) shows the perfect reconstruction of the input signal which is
delayed by D sampling units.

The extension to N subbands and performing the kernel filter using comple-
mentary techniques [Ram88, Ram90] leads to the multi-complementary filter bank
as shown in Fig. 5.58. Delays are integrated in the high-pass (¥1) and band-pass
subbands (¥ to Yy —2) in order to compensate the group delay. The filter structure
consists of N horizontal stages. The kernel filter is implemented as a complemen-
tary filter in .S vertical stages. The design of the latter shall be discussed later on.
The vertical delays in the extended kernel filters (EKF; to EKFy_;) compensate
group delays caused by forming the complementary component. At the end of each
of these vertical stages is the kernel filter Hg. With

_ a—(k-D)

ZE =2 and k=1,--- N (5.230)

the signals Xy (zx) can be written as a function of the signals X (zz) as

X =diag[z7? 2P 2PMIX, (5.231)
with A A
X = [Xl(zl) XQ(ZQ) XN(ZN)]T
X = [Xl(zl) Xz(Zg) XN(ZN)]T
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Figure 5.58 Multi-complementary filter bank.

and with k£ = N — [ the delays are given by

Dieny = 0 (5.232)
Di_n_y = 2DN-1+1 +D [=1,.,N -1, (5233)

Perfect reconstruction of the input signal can be achieved if the horizontal delays
Dy are given by

Dy, =0
DHk:N—-l = 0
Duicny = 2Dn_141 l=2,...N—1.

The implementation of the extended vertical kernel] filters is done by calculating
complementary components as shown in Fig. 5.59. After upsampling, interpolating
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with a high-pass HP (Fig. 5.59b) and forming the complementary component, the
kernel filter Hx with frequency response as in Fig. 5.59a becomes low-pass with
frequency response as illustrated in Fig. 5.59c. The slope of the filter characte-
ristic remains constant whereas the cutoff frequency is doubled. A subsequent
upsampling with an interpolation high-pass (Fig. 5.59d) and complement filtering
leads to the frequency response in Fig. 5.5%e. With the help of this technique, the
kernel filter is implemented at a reduced sampling rate. The cutoff frequency is
moved to a desired cutoff frequency by using decimation/interpolation stages with
complement filtering.

[Hel)]
N o)
___________ Q"
2ri3 ™
[Hele) PP _.
......... 4
_________ “‘// Z > Q' b)
2n/3 n
+1Pv2 3
el
c
L DY )
! 2r/3 n
2l |2
HP| [HP|  |HEei®)| - DHPARR
o, - g
v "/ .9
2n/3 n
Py o
|Hel)
)
[ —— N
2n/3 n

Figure 5.59 Multirate complementary filter.

Computational Complexity. For an N-band multi-complementary filter
bank with N — 1 decomposition filters where each is implemented by a kernel
filter with S stages, the horizontal complexity is given by:

1 1 1
HC = HC, + HC, (5 et Q—N) . (5.234)

HC,; denotes the number of operations that are carried out at the input sampling
rate. These operations occur in the horizontal stage HS; (see Fig. 5.58). HC,

denotes the number of operations (horizontal stage HS,) that are performed at
half of the sampling rate. The number of operations in the stages from HS, to
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HSp are approximately identical but are calculated at sampling rates that are
successively halved.

The complexities VC; to VCxn ) of the vertical kernel filters EKF; to EKFpn_
are calculated as

VG, = %Vl +V, (}I+él-++2—5%)

VG, = %Vl +V, (é+11—6++25%) = %VCl

VC; = %Vl + Vs (% + 3% + ...+ 2—;—3) = %VCI
VCyo1 = %VI + Vo (2% +...+ 25+1N_1) = 21\,1_1\101,

where V, depicts the complexity of the first stage VS, and V3 is the complexity
of the second stage VS (see Fig. 5.58). It can be seen that the total vertical
complexity is given by

1 1 1
VC =V(G, (1+§+Z+'"+ 2N_1) . (5.235)
The upper bound of the total complexity results is the sum of horizontal and
vertical complexities and can be written as

Cior = HCy; + HC, + 2V, (5.236)

The total complexity Cy,: is independent of the number of frequency bands NV and
vertical stages S. This means that for real-time implementation with finite com-
putation power, any desired number of subbands with however narrow transition
bands can be implemented!

5.3.2 Example: 8-Band Multi-complementary Filter Bank

In order to implement the frequency decomposition into the 8 bands shown in
Fig. 5.60, the multirate filter structure of Fig. 5.61 is employed. The individual
parts of the system provide means of downsampling (D=decimation), upsampling
(I=interpolation), kernel filtering (K), signal processing (SP), delays (N;=Delay
1, No=Delay 2) and group delay compensation M; in the ith band. The frequency
decomposition is carried out successively from the highest to the lowest frequency
band. In the two lowest frequency bands, a compensation for group delay is not
required.
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Figure 5.60 Modified octave decomposition of the frequency band.

The slope of the filter response can be adjusted with the complementary filter
shown in Fig. 5.61 which consists of one stage. The specifications of an 8-band
equalizer are listed in Table 5.10. The stop-band attenuation of the subband filters
is chosen to be 100 dB.

Table 5.10 Transition frequencies fc; and transition bandwidths TB in an 8-band equa-
lizer.
| fslkHz] || for[Hz] | fealHz] | fes[Hz] | fealHz] | fos[Hz] | feelHz] | forlH2] |

44.1 7350 3675 1837.5 918.75 459.375 ~2 230 ~ 115
TB[H z] 1280 640 320 160 80 40 20

Filter Design

The design of different decimation and interpolation filters is mainly determined
by the transition bandwidth and the stop-band attenuation for the lower frequency
band. As an example, a design is made for an 8-band equalizer. The filter structure
for both lower frequency bands is illustrated in Fig. 5.62. The design specifications
for the kernel low-pass, decimation and interpolation filters are presented in Fig.
5.63.

Kernel Filter Design. The transition bandwidth of the kernel filter is known
if the transition bandwidth is given for the lower frequency band. This kernel filter
must be designed for a sampling rate of fo = 44100/(2%). For a given transition
bandwidth frp at a frequency f” = f_;: /3 the normalized pass-band frequency is

1

Qpy _ = fre/2

T 237
S £ (5.237)
and the normalized stop-band frequency

Vo, _ f + o/, (5.238)

2w Is

With the help of these parameters the filter can be designed.
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x(n) y{n)

441 KHz 0-22050 Hz 7350-22050 Hz

0-115 Hz

344 53 Hz

Figure 5.61 Linear phase 8-band equalizer.
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Figure 5.62 Part of a system.
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Figure 5.63 Decimation and interpolation filters.

Making use of the Parks-McClellan program the frequency response shown in
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Fig. 5.64 is obtained for a transition bandwidth of frp = 20 Hz. The necessary
filter length for a stop-band attenuation of 100 dB is 53 taps.

Kemel Filter N=53

-40 +

60

IH(f} [dB] —»

-100 -

-120 : : : : s
0 10 20 30 40 50 60 70 80

f[Hz] -
Figure 5.64 Kernel low-pass filter with a transition bandwidth of 20 Hz.

Decimation and Interpolation High-pass Filter. These filters are desi-
gned for a sampling rate of fls = 44100/(27) and are half-band filters as illustrated
in Fig. 5.63. First a low-pass filter is designed followed by a high-pass to low-pass
transformation. For a given transition bandwidth frp, the normalized pass-band
frequency is

‘Q”Pb _ f” + fre/2

2
o 1 (5.239)
and the normalized stop-band frequency is given by
Qs  2f - 2
sb 2 = Jrn/2 (5.240)

2T fs

With these parameters the design of a half-band filter is carried out. Figure 5.65
shows the frequency response. The necessary filter length for a stop-band attenua-
tion of 100 dB is 55 taps.

Decimation and Interpolation Low-pass Filter. These filters are designed
for a sampling rate of fs = 44100/(2%) and are also half-band filters. For a given
transition bandwidth frp, the normalized pass-band frequency is

Qpy _ 2f + frB/2
or fS

(5.241)
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Figure 5.65 Decimation and interpolation high-pass filter.

and the normalized stop-band frequency is given by

Qs _ Af" — frp/2
27T fs ’

With these parameters the design of a half-band filter is carried out. Figure 5.66
shows the frequency response. The necessary filter length for a stop-band atte-
nuation of 100 dB is 43 taps. These filter designs are used in every decomposition
stage so that the transition frequencies and bandwidths are obtained as listed in
Table 5.10.

(5.242)

Memory Requirements and Latency Time. The memory requirements de-
pend directly on the transition bandwidth and the stop-band attenuation. Here,
the memory operations for the actual kernel, decimation and interpolation filters
have to be differentiated from the group delay compensations in the frequency
bands. The compensating group delay N; for decimation and interpolation high-
pass filters of order Opyp, e 15 calculated with the help of the kernel filter order
Oxr according to

Ny = OKF‘ + ODHP/IHP' (5-243)

The group delay compensation N, for the decimation and interpolation low-pass
filters of order Oppp/p is given by

IVZ = 2N1 + ODLP/ILP' (5.244)
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Figure 5.66 Decimation and interpolation low-pass filter.

The delays Mj ... Mg in the individual frequency bands are calculated recursively
starting from the two lowest frequency bands:

My = 2N, (5.245)
My = 6N, (5.246)
Ms = 14N, (5.247)
Mg = 30N, (5.248)
M; = 62N, (5.249)
My = 126N,. (5.250)

Memory Requirement (Static RAM) per Decomposition Stage.

Table 5.11 Memory requirements for static RAM.

Kernel filter Okr
DHP/IHP 2 Opmppme
DLP/ILP 3~ Opre s

Nl OKF + ODHP/IHP
J'VZ 2- le + ODLP/ILP

Memory Requirement for Group Delay (Dynamic RAM).
CGD =)~ M; = 240N, (5.251)
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Latency Time.
Mg

~ 44100
The presented example requires SRAM = 4522 and DRAM = 60960 memory
locations. The latency time is t;, = 725 ms.

10°  [ms] (5.252)

tr



Chapter 6

Room Simulation

Room simulation artificially reproduces the acoustics of a room. The foundations
of room acoustics are found in {Cre78, Kut91]. Room simulation is mainly used
for post-processing signals in which a microphone is located in the vicinity of an
instrument or a voice. The direct signal, without additional rcom impression, is
mapped to a certain acoustical room, for example a concert hall or a church. In
terms of signal processing, the post-processing of an audio signal with room si-
mulation corresponds to the convolution of the audio signal with a room impulse
response. The room impulse response between two points in a room can be clas-
sified as shown in Fig. 6.1. The impulse response consists of the direct signal,
early reflections (from walls) and subsequent reverberation. The number of early

|n¢ny| 4 Direct Signal

Early Reflections

‘ ’ “I‘ ‘ ‘ Subsequent Reverberation

n

Figure 6.1 Classification of room impulse response as direct signal, early reflections and
subsequent reverberation.

reflections continuously increases with time and leads to a random signal with ex-
ponential decay called subsequent reverberation. The reverberation time (decrease
of sound pressure level by 60 dB) can be calculated using the geometry of the room

181
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and the partial areas that absorb sound in the room according to

V. 0163 V
Too = 016375 = +—- S (6.1)

Tso = reverberation time in [s]
V = volume of the room [m3]
S, = partial areas [m’]

a, = absorption coefficient of partial area S,..

The geometry of the room also determines the eigenfrequencies of a three-dimen-
sional rectangular room:

c ne \ ny \ 2 n,\>
T y z
e — = e e =5 62
=gy () () +(8) &
with
T, Thy, Nz integer number of half waves (0,1,2,...)
le,ly, 1, dimensions of a rectangular room
c sound velocity.

For larger rooms, the eigenfrequencies start from very low frequencies. In contrast,
the lowest eigenfrequencies of smaller rooms are shifted towards higher frequencies.
The mean frequency between two extrema of the frequency response of a large room
is approximately inversely proportional to the reverberation time [Schr87]:

Af ~1/Tgo. (6.3)

The distance between two eigenfrequencies decreases with increasing number of
half waves. Above a critical frequency

fc > 4000\/ Teo/V (64)

the density of eigenfrequencies becomes so large that they overlap each other
[Schr87].

Calculation of room impulse responses with model-based methods.
The methods for analytically determining a room impulse response are based on
the ray tracing model [Schr70] or image model [All79]. In case of the ray tracing
model, a point source with radial emission is assumed. The path length of rays
and the absorption coefficients of walls, roofs and floors are used to determine
the room impulse response (see Fig. 6.2). For the image model, image rooms with
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secondary image sources are formed which in turn have further image rooms and
image sources. The summation of all image sources with corresponding delays
and attenuations provides the estimated room impulse response. Both methods
are applied in room acoustics to get insight into the acoustical properties when
planning concert halls, theaters etc.

a) Ray Tracing b) Virtual image Sources
O ..... o;0 o:0
o (£ 030
[+] o|e o, 0
o 0:0 0;Q
] ;0 Q:0
~
S -] 00 oio

Figure 6.2 Model-based methods for calculating room impulse responses.

Measurement of room impulse response by pseudo-random sequence.
The direct measurement of a room impulse response is carried out by impulse
excitation. Better measurement results are obtained by correlation measurement of
room impulse responses by using pseudo-random sequences as the excitation signal.
Pseudo-random sequences can be generated by feedback shift registers [Mac76].
The pseudo-random sequence is periodic with period L = 2V — 1 where N is the
number of states of the shift register. The autocorrelation function (ACF) of such
a random sequence is given by

. a® n=0,L,2L,..
Faa(n) = { —Ez elsewhere ' (6.5)

where a is the maximum value of the pseudo-random sequence. The ACF also has
a period L. After going through a DA converter, the pseudo-random signal is fed
through a loudspeaker into a room (see Fig. 6.3).

Room
Pseudo x(t {
Random v — Y
Generator

Analog Inputs
LR

2 2

DAT Dig. Quiput PC_
Recorder CC -> hin)

Figure 6.3 Measurement of room impulse response with pseudo-random signal z(t).

At the same time, the pseudo-random signal and the room signal captured by
a microphone are recorded on a DAT recorder. The impulse response is obtained
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with the cyclic cross-correlation
Fay(n) = Tze(n) * h(n) & h(n). (6.6)

For the measurement of room impulse responses it has to be considered that the
periodic length of the pseudo-random sequence must be longer than the length of
the room impulse response. Otherwise, aliasing in the periodic cross-correlation
occurs. For improving the signal-to-noise ratio of the measurement, the average of
several periods of the cross-correlation is calculated.

The just described methods provide means for calculating the impulse response
out of the geometry of a room and for measuring the impulse response of a real
room. The reproduction of such an impulse response is basically possible with the
help of the fast convolution method as described in chapter 5. However, owing
to the computational complexity, the implementation requires a multiprocessor
system or specially manufactured integrated circuits. In contrast, the following
sections deal with networks which do not generate the exact room impulse re-
sponse, but offer, with reasonable complexity, a satisfactory solution in terms of
acoustic aspects.

6.1 Early Reflections

Early reflections decisively affect room perception. Spatial impression is produced
by early reflections which reach the listener laterally. The significance of lateral re-
flections in creating spatial impression was investigated by Barron [Bar71, Bar82].
Fundamental investigations of concert halls and their different acoustics are des-
cribed by Ando [And85].

6.1.1 Ando’s Investigations

The results of the investigations by Ando are summarized in the following:

e Preferred delay time of a single reflection: with the ACF of the signal, the
delay is determined from |ry.(At;)| = 0.1 7..(0).

o Preferred direction of a single reflection: +(55° + 20°).
¢ Preferred amplitude of a single reflection: A, = +5 dB.

¢ Preferred spectrum of a single reflection: no spectral shaping.
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e Preferred delay time of a second reflection: Aty = 1.8 - At;.

e Preferred reverberation time: Tgo = 23 - At;.

These results show that in terms of perception, a preferred pattern of reflections
as well as the reverberation time depend decisively on the audio signal. Hence for
different audio signals like classical music, pop music, speech or musical instru-
ments entirely different requirements for early reflections and reverberation time
have to be considered.

6.1.2 Gerzon Algorithm

The commonly used method of simulating early reflections is shown in Figs. 6.4
and 6.5. The signal is weighted and fed into a system generating early reflections,
followed by an addition to the input signal. The first M reflections are imple-

x(n) y(n)
o ’ »(— o

®_‘ Early Reftections
Simulator

Figure 6.4 Simulation of early reflections.

mented by reading samples from a delay line and weighting these samples with a
corresponding factor g; (see Fig. 6.5). The design of a system for simulating early

x(n)

Early Reflections

Simulator

19,79, 19y

y(n)

——pe— 90

Figure 6.5 Early reflections.

reflections will now be described as proposed by Gerzon [Ger92].

Craven Hypothesis. The Craven hypothesis [Ger92] states that the human
perception of the distance to a sound source is evaluated with the help of the
amplitude and delay time ratios of the direct signal and early reflections as given
by

9 = = (6.7)
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d—d
Tp = . (6.8)
CTD
g-—l _ 1 (6 9)
with
d distance of source
d distance of image source of the first reflection
g relative amplitude of direct signal to first reflection
c sound velocity
Tp relative delay time of first reflection to direct signal.

Without a reflection, human beings are not able to determine the distance d to a
sound source. The extended Craven hypothesis includes the absorption coefficient
r for determining

d
g = Eexp(—rTD) (6.10)
d—d
Tp = — (6.11)
CTD
74T TearTo) 1 o1
_ exp(-rTp)
29 = T+ Tpjd (6.13)

For a given reverberation time 7Tg, the absorption coefficient can be calculated by
using exp(—rTgo) = 1/1000 according to

With the relationships (6.11) and (6.13), the parameters for an early reflections
simulator as shown in Fig. 6.4 can be determined.

Gerzon’s Distance Algorithm. For a system simulating early reflections
produced by more than one sound source, Gerzon's distance algorithm can be
used [Ger92], where several sound sources are placed with different distances as

well as in the stereo position into a stereophonic sound field. An application of
this technique is mainly used in multichannel mixing consoles.

By shifting a sound source by —§ (decrease of relative delay time) it follows
that from the relative delay time of the first reflection Tp — §/c = i;({@l’ and
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the relative amplitude according to (6.13)

1 B ) exp(—rTp)
gs - Tp =3/ )exp(—r(TD —~d/c)) = { exp(r&/c)} Tt Tpd
d+6
(6.15)

This results in a delay and a gain factor for the direct signal (see Fig. 6.6) as given
by

d, = d+6 (6.16)
tD = 5/6 (617)
d
gp = 6exp(——r(5/c). (6.18)
4
x(n) L® y{n)
o— DEL {4+
_| Early Reflections
Simulator

Figure 6.6 Delay and weighting of the direct signal.

By shifting a sound source by +4 (increase of relative delay time) the relative
delay time of the first reflection is Tp — 6 /c = u_cﬂ. As a consequence, a delay
and a gain factor for the effect signal (see Fig. 6.7) are given by

dy = d-6 (6.19)

i = 5/6 (6.20)
d

gg = Tt 6exp(—1 8/c). (6.21)

Using two delay systems in the direct signal as well as in the reflection path, two

x(n) y(n)

o —(F
r=—=—="" 1
¥ I
L DEL ;é_‘ Early Reflections

Simulater

Figure 6.7 Delay and weighting of effect signal.
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I
¥
x{n) oeL b 8 (D) v(r;)

Q 9 | Early Reflections
DEL Simulator

Figure 6.8 Coupled factors and delays.

coupled weighting factors and delay lengths (see Fig. 6.8) can be obtained. For
multichannel applications like digital mixing conscles, the scheme in Fig. 6.9 is
suggested by Gerzon [Ger92]. Only one system for implementing early reflections
is necessary.

DEL
x,(n)

DEL

DEL

x,(n}

|
: y(n
oet s P

L] * 1

DEL D®—‘
DEL D®——

Figure 6.9 Multichannel application.

X (")

Stereo Implementation. In many applications, stereo signals have to be
processed (see Fig. 6.10). For this, reflections from both sides with positive and
negative angles are implemented to avoid stereo displacements. The weighting is
done with

- _ exp(—rTy)
%= T ren/d
cos®; —sin®;

G: = gi(sin@i cos ©; ) (6.22)
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X (n) &————*{ Eary Reflections

Simuiator
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GG GulX
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Figure 6.10 Stereo reflections.

For each reflection, a weighting factor and an angle have to be considered.

Generation of early reflection with increasing time density. In [Schr61]
it is stated that the time density of reflections increases proportional to the square
of time:

Number of reflections per second = (4nc®/V) - 2. (6.23)

After time to the reflections have a statistical decay behavior. For a pulse width
of At, individual reflections overlap after

tc =5-107°/V/At. (6.24)

For avoiding overlap of reflections, Gerzon [Ger92] suggests the increase of the
density of reflections with ? (for example p = 1,0.5 leads to ¢ or t°°). In the
interval (0, 1], with initial value z¢ and a number k between 0.5 and 1 the following
procedure is performed:

y; = o + 1k(mod 1) i=0,1,...,M - 1. (6.25)

The numbers y; in the interval (0, 1] are now transformed to time delays T; in the
interval [Tyin, Tmin + Tmaz] by

b = TP (6.26)
a = (Tyaz+ Trmin)' TP —b (6.27)
T; = (ay; + b)1/(+P), (6.28)

The increase of the density of reflections is shown by the example in Fig. 6.11.

6.2 Subsequent Reverberation

This section deals with techniques for reproducing subsequent reverberation. The
first approaches by Schroeder [Schr61, Schr62] and their extension by Moorer
[Moo78] will be described. Further developments by Stautner and Puckette [Sta82]
led to general feedback networks [Ger71, Ger76, Jot91, Rco97] which have a ran-
dom impulse response with exponential decay.
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Figure 6.11 Increase of density for 9 reflections.

6.2.1 Schroeder Algorithm

The first software implementations of room simulation algorithms were carried out
in 1961 by Schroeder. The basis for simulating an impulse response with exponen-
tial decay is a recursive comb filter shown in Fig. 6.12.

x(n) + ™ o y(n)

Figure 6.12 Recursive comb filter (g = feedback factor, M = delay length).

The transfer function is given by

H v
M-1
Ayp
= > k (6.30)
Z = Zp
k=0
with
Ay = Lk residues (6.31)
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zr = red? M poles (6.32)

r o= ¢g'/M pole radius. (6.33)

With the correspondence of the Z-transform a/(z —a) o—e €(n — 1)a™ the impulse
response is given by
M—1

H(z) o—-e h{n) = n——l Zz

?-.

n—l

M—1
hin) = T” Z efStem (6.34)
k=

The complex poles are combined as pairs so that the impulse response can be
written as

M
en—1) , ¥
h = —— 2yt Qr M .
(n) TP ; cos{xn even (6.35)
| MEL
_ E(szw —g ) |14 S cosn| M uneven. (6.36)
k=1

The impulse response is expressed as a summation of cosine oscillations with fre-
quencies §2;. These frequencies correspond to the eigenfrequencies of a room. They
decay with an exponential envelope r", where r is the damping constant (see Fig.
6.14a). The overall impulse response is weighted by M . The frequency response
of the comb filter is shown in Fig. 6.14c and is given by

: 1
H(Y)| = : :
|H (") \/1_2gCOS(QM)+g2 (6.37)
It shows maxima at Q@ = 2ak/M (k=0,1,...,M ~ 1) of magnitude
; 1
H(e® = — :
[H (e )max = 7= . (6.38)
and minima at Q@ = (2k+ D)n/M (k=0,1,...,M — 1) of magnitude
: 1
Q
|H(€J )lmin = 1+g- (6.39)

Another basis of the Schroeder algorithm is the all-pass filter shown in Fig.
6.13 with transfer function

H(z) = 29 (6.40)

=~ 2 S — (6.41)
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From Equation (6.41) it can be seen that the impulse response can also be expres-
sed as a summation of cosine oscillations.

9

x(n) + zM T y(n)

Figure 6.13 All-pass filter (M = delay length).

The impulse responses and the frequency responses of a comb filter and an all-
pass filter are presented in Fig. 6.14. Both impulse responses show an exponential
decay. A sample in the impulse response occurs every M sampling periods. The
density of samples in the impulse responses does not increase with time. For the
recursive comb filter, spectral shaping due to the maxima at the corresponding
poles of the transfer function is observed.

Frequency Density
The frequency density describes the number of eigenfrequencies per Hertz and is
defined for a comb filter [Jot91] as

Dy=M -Ts [1/Hz]. (6.42)

A single comb filter gives M resonances in the interval [0, 2x], which are separated
by a frequency distance of Af = '1’:—45— In order to increase the frequency density, a
parallel circuit (see Fig. 6.15) of P comb filters is used which leads to

P 2~ M, 2= M )
= z; L= gpzr [1 g T g T (6.43)
The choice of the delay systems {Schr62] is suggested as
M :Mp=1:15 (6.44)
and leads to a frequency density
D,«:iMP-TS:P-M-Tg. (6.45)

p=1
In [Schr62] a necessary frequency density of Dy = 0.15 eigenfrequencies per Hertz
is proposed.
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Figure 6.14 a) Impulse response of a comb filter (M = 10, ¢ = -0.6). b) Impulse
response of an all-pass filter (M = 10, g = -0.6). ¢) Frequency response of a comb filter.
d) Frequency response of an all-pass filter.

Echo Density

The echo density is the number of reflections per second and is defined for a comb

filter [Jot91] as
1

D; = 1/s]. 4
o=z /Al (6.46)
For a parallel circuit of comb filters, the echo density is given by
P 1
D, = = P— . 6.47
t ;; M, -Ts M-Ts ( )

With (6.45) and (6.47), the number P of parallel comb filters and the mean delay
length M

P = /D; Dy (6.48)



194 6 Room Simulation

x(n) o— M1 »(+)— yin)
[¢]]
4 z M2 +
[¢}]
z M3
93

Figure 6.15 Parallel circuit of comb filters.

MTs = +/D;/D, (6.49)

are obtained. For a frequency density Dy = 0.15 and an echo density D; = 1000
it can be concluded that the number of parallel comb filters is P = 12 and the
mean delay length is MTs = 12 ms. Since the frequency density is proportional
to the reverberation time, the number of parallel comb filters has to be increased
accordingly.

A further increase of the echo density is achieved by a cascade circuit of Py4
all-pass filters (see Fig. 6.16) with transfer function

Py z_M" ~ gp
H(Z) = H ]_Tg—_z-——iwp' (650)
p=1 P

These all-pass sections are connected in series with the parallel circuit of comb

filters. For a sufficient echo density, 10000 reflections per second are necessary
[Gri89].

Avoiding Unnatural Resonances

Since the impulse response of a single comb filter can be described as a sum of M
(delay length) decaying sinuscidal oscillations, the short-time FFT of consecutive
parts from this impulse response gives the frequency response shown in Fig. 6.17 in
the time-frequency domain. Only the maxima are presented. The parallel circuit of
comb filters with the condition {6.44) leads to radii of pole distribution as given by
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x(n) o y(r)
Figure 6.16 Cascade circuit of all-pass filters.
LAY
// Im(z}
// | e= h
t
Figure 6.17 Short-time spectra of a comb filter (M = 8).
rp = g;,/M‘” (p =1,2,...,P). In order to avoid unnatural resonances, the radii of

the pole distribution of a parallel circuit of comb filters must satisfy the condition

r, = const. = g;,/MP for p=1,2,...,P. (6.51)

This leads to the short-time spectra and the pole distribution as shown in Fig.
6.18. Figure 6.19 shows the impulse response and the echogram (logarithmic pre-

(K]

, (),
I C

Figure 6.18 Short-time spectra of a parallel circuit of comb filters.

sentation of the amplitude of the impulse response) of a parallel circuit of comb
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filters with equal and unequal pole radii. For unequal pole radius, the different
decay times of the eigenfrequencies can be seen.

Impulse Response (equal pole radius) Impulse Response (unequal pole radius)

1
0.5 ‘ 0.5
1 H‘ Ly 1
—- [ —- Al
£ 0 | T = 0 l'fl T oy
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Figure 6.19 Impulse response and echogram.

Reverberation Time

The reverberation time of a recursive comb filter can be adjusted with the feedback
factor g which describes the ratio

h{n)

g= h(n——]\/.f_) (652)

of two different nonzero samples of the impulse response separated by M sampling
periods. The factor g describes the decay constant per M samples. The decay
constant per sampling period can be calculated from the pole radius r = ¢/ and
is defined as

hin)

r= CEE (6.53)
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The relationship between feedback factor ¢ and pole radius r can also be expressed
using (6.52) and (6.53) and is given by

k) k() k=1 ha—(M-1)
I hn—M) hin-1) h(n-2 hn— M) '

(6.54)
With the constant radius r = g,ﬁ/M” and the logarithmic parameters R = 20log;,r
and G, = 20log,9p, the attenuation per sampling period is given by
G
R=-Z. 6.55
i (6.55)
The reverberation time is defined as decay time of the impulse response to -60 dB.
With —TF—S;—) = %, the reverberation time can be written as

Ts TsM, 3

Teo = —60— = —60 = M, -
% R Gy 10810|1/9p| i

Ts. (6.56)

The control of reverberation time can either be carried out with the feedback
factor ¢ or the delay parameter M. The increase of the reverberation time with
factor ¢ is responsible for a pole radius close to the unit circle and, hence, leads to
an amplification of maxima of the frequency response (see Equation {6.38)). This
leads to a coloring of the sound impression. The increase of the delay parameter
M , on the other hand, leads to an impulse response whose nonzero samples are far
apart from each other, so that individual echoes can be heard. The discrepancy
between echo density and frequency density for a given reverberation time can be
solved by a sufficient number of parallel comb filters.

Frequency-dependent Reverberation Time

The eigenfrequencies of rooms have a rapid decay for high frequencies. A frequency-
dependent reverberation time can be implemented with a low-pass filter

1
H = — 57
1(2) = (6.57)
in the feedback loop of a comb filter. The modified comb filter in Fig. 6.20 has
transfer function

M
H(z) = [ H. ()™ (6.58)
with the stability criterion
<1 (6.59)

l1—a
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x(n} y(n)

Figure 6.20 Modified low-pass comb filter.

The short-time spectra and the pole distribution of a parallel circuit with low-
pass comb filters are presented in Fig. 6.21. Low eigenfrequencies decay slower
than higher ones. The circular pole distribution becomes an elliptical distribution
where the low-frequency poles are moved towards the unit circle.

[H |
Im{z}

(N
C

-

Figure 6.21 Short-time spectra of a parallel circuit of low-pass comb filters.
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Stereo Room Simulation

An extension of the Schroeder algorithm was suggested by Moorer [Moo78)]. In
addition to a parallel circuit of comb filters in series with a cascade of all-pass
filters, a pattern of early reflections is generated. Figure 6.22 shows a room simu-
lation system for a stereo signal. The generated room signals ey (n) and eg(n) are
added to the direct signals z1(n) and zr(n). The input of the room simulation is
the mono signal zps(n) = z1(n) + zr(n) (sum signal). This mono signal is added
to the left and right room signals after going through a delay line DEL1. The
total sum of all reflections is fed via another delay line DEL2 to a parallel circuit
of comb filters which implements subsequent reverberation. In order to get a high
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quality spatial impression, it is necessary to decorrelate the room signals ey, (n) and
er(n) [Bla74, Bla85). This can be achieved by taking left and right room signals
at different points out of the parallel circuit of comb filters. These room signals
are then fed to an all-pass section for increasing the echo density.

% (n) ¥ ()
o

@q

COMB1

— COMB2

e n

AP1.M I{CF

COMB3

ér DEL1 ¥ DEL2 LJ

P

COMB4

AP1.M @—
egin)

———

g\ —» COMBN
+

a
XR(n) '\_D_)'Rc’(n)
Figure 6.22 Stereo room simulation.

Besides the described system for stereo room simulation in which the mono
signal is processed with a room algorithm, it is also possible to perform complete
stereo processing of zy, (n) und x g (n), or to process a mono signal zpr(n) = zp(n)+
zg(n) and a side (difference) signal z5(n) = z(n) — zr(n) individually.

6.2.2 General Feedback Systems

Further developments of the comb filter method by Schroeder tried to improve the
acoustic quality of reverberation and especially the increase of echo density [Ger71,
Ger76, Sta82, Jot91, Jot92, Roc97]. With respect to [Jot91], the general feedback
system in Fig. 6.23 is considered. For simplification only three delay systems are
shown. The feedback of output signals is carried out with the help of a matrix A
which feeds back each of the three outputs to the three inputs.
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x(n) o > —o y(n)
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Figure 6.23 General feedback system.

In general, for N delay systems we can write

y(n) = Zc;m + dz(n) (6.60)

gi(n+my) = Zauqz +bz(n)  1<j<N. (6.61)

The Z-transform leads to

Y(z) = cf'Qz)+d-X(2) (6.62)
D(2)-Q(z) = A-Qz)+b-X(2)
-+ Q(z) = [D(z)-Al"'b- X(2) (6.63)
with
Q1(z) by C1
Q(z) = : , b= ], e= (6.64)
Qn(2) by CN

and the diagonal delay matrix
D(z) = diag[lz"™ ... z7 V] (6.65)
With (6.63) the Z-transform of the output is given by

Y(z) =c'[D(z) — A]7'b - X(2) +d- X(2) (6.66)
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and the transfer function by

H(z) =c’[D(z) - A]"'b+d. (6.67)

The system is stable if the feedback matrix A can be expressed as a product
of unitary matrix U (U™! = ﬁT) and a diagonal matrix with g;; < 1 (derivation
in [Sta82]). Figure 6.24 shows a general feedback system with input vector X(z),
the output vector Y(z), a diagonal matrix D(z) consisting of purely delay systems
z~™ and a feedback matrix A. This feedback matrix consists of an orthogonal
matrix U multiplied by the matrix G which results in a weighting of the feedback
matrix A.

' A=UG '

D(z)

Figure 6.24 Feedback system.

If an orthogonal matrix U is chosen and the weighting matrix is equal to the
unit matrix G = I, the system in Fig. 6.24 implements a white-noise random signal
with Gaussian distribution when a pulse excitation is applied to the input. The
time density of this signal slowly increases with time. If the diagonal elements of the
weighting matrix G are less than one, a random signal with exponential amplitude
decay results. With the help of the weighting matrix G, the reverberation time can
be adjusted. Such a feedback system performs the convolution of an audio input
signal with an impulse response of exponential decay.

The effect of the orthogonal matrix U on the subjective sound perception of
subsequent reverberation is of particular interest. A relationship between the dis-
tribution of the eigenvalues of the matrix U on the unit circle and the poles of the
system transfer function cannot be described analytically, owing to the high order
of the feedback system. In [Her94), it is shown experimentally that the distribution
of eigenvalues within the right-hand or left-hand complex plane produces a uniform
distribution of poles of the system transfer function. Such a feedback matrix leads
to an acoustically improved reverberation. The echo density rapidly increases to
the maximum value of one sample per sampling period for a uniform distribution



202 6 Room Simulation

of eigenvalues. Besides the feedback matrix, additional digital filtering is neces-
sary for spectrally shaping the subsequent reverberation and for implementing
frequency-dependent decay times (see [Jot91]). The following example illustrates
the increase of the echo density.

Example: First, a system with only one feedback path per comb filter is
considered. The feedback matrix is then given by

A= (6.68)

g
~—1L
V2

Figure 6.25 shows the impulse response and the amplitude frequency response.

Impulse Response Frequency Response
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Figure 6.25 Impulse response and frequency response of 4-delay system with a unit
matrix as unitary feedback matrix (g = 0.83).

With the feedback matrix

01 1 0

g |-10 0 -1

A=Z1 10 0 (6.69)
01 -1 0

from [Sta82], the impulse response and the corresponding frequency response
shown in Fig. 6.26 are obtained. In contrast to Fig. 6.25 an increase of the echo
density of the impulse response is noticed.
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Figure 6.26 Impulse response and frequency response of a 4-delay system with unitary
feedback matrix (g = 0.63).

6.3 Approximation of Room Impulse
Responses

In contrast to the systems for simulation of room impulse responses discussed up to
this point, a method is now presented that measures and approximates the room
impulse response in one step [Z3190b, Sch92, Sch93] (see Fig. 6.27). Moreover,
it leads to a parametric representation of the room impulse response. Since the
decay times of room impulse responses decrease for high frequencies, use is made
of multirate signal processing.

The analog system that is to be measured and approximated is excited with
a binary pseudo-random sequence z(n) via a DA converter. The resulting room
signal gives a digital sequence y(n) after AD conversion. The discrete-time se-
quence y(n) and the pseudo-random sequence z(n) are each decomposed by an
analysis filter bank into subband signals y1,...,yp and z;, ..., zp respectively. The
sampling rate is reduced in accordance with the bandwidth of the signals. The
subband signals y;,...,yp are approximated by adjusting the subband systems
Hy(z) = Ai1(z)/By(2),...,Hp(z) = Ap(z)/Bp(2). The outputs §i,...,gp of these
subband systems give an approximation of the measured subband signals. With
this procedure the impulse response is given in parametric form (subband para-
meters) and can be directly simulated in the digital domain.

By suitably adjusting the analysis filter bank [Sch94] the subband impulse
responses are obtained directly from the cross-correlation function

hi X Troy;- (6.70)



204 6 Room Simulation
Analog
System
DAC | h{t) —» ADC
\\\ /,/'
N ’
AN e Y1
A ’
\\ ,/ :
i
o hiny P AFB | !
|
N
x(n)
‘ A
% Aq(2) Y1
1 B, (2) I
i | )
AFB | | || sFe |20
! P .
»  [A@] Ve
Bp(2)
Analysis Subband Synthesis
Filter Bank Systems Filter Bank

Figure 6.27 System measuring and approximating room impulse responses.

The subband impulse responses are approximated by a nonrecursive filter and a
recursive comb filter. The cascade of both filters leads to the transfer function

. b0+...+le.Z_M‘

H,'(Z)

1— gzt

= Z h,-(n,-)z_"",

(6.71)

n;=0

which is set equal to the impulse response in subband ¢. Multiplying both sides of
(6.71) by the denominator 1 — g;z= ¢ gives

(bo + ...+ le.Z_M") = (Z hi(n,-)z_”") (1 — giz_N").

n;=0

(6.72)

Truncating the impulse response of each subband to K samples and comparing
the coeflicients of powers of z on both sides of the equation the following set of

equations is obtained:

bl [ he O 0 0
b hy ha 0 0
. . ; ] . 1
: ' . 0

by | = hv hum—1 hum-o ha-n : (6.73)
0 hyvtr  hvy humo havr—n+1 :
. ) . . . -g

L 0 | hx  hx-1 hk—» hx_n
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The coefficients by ... bar and g in the above equation are determined in two steps.
First, the coefficient g of the comb filter is calculated from the exponentially de-
caying envelope of the measured subband impulse response. The vector [10. .. g]T
is then used to determine the coefficients [bob; - .. bM]T.

For the calculation of the coefficient g, we start with the impulse response of
the comb filter H(z) = 1/(1 — gz—") given by

h(l = Nn) =g (6.74)

We further make use of the integrated impulse response
o0
he(k) =Y h(n)? (6.75)
n=k

defined in [Schr65]. It describes the rest energy of the impulse response at time
k. By taking the logarithm of h,(k), a straight line over time index % is obtained.
From the slope of the straight line we use

Inhg(ny) — Inhe(ng)
ny — Nip

Ing=N- with ny < n» (6.76)

to determine the coefficient g [Sch94]. For M = N, the coefficients in (6.73) of the
numerator polynomial are obtained directly from the impulse response

b, = hn for n=0,1,...., M -1
by = har — ghg. (6.77)

Hence, the numerator polynomial of (6.71) is a direct reproduction of the first
M samples of the impulse response (see Fig. 6.28). The denominator polynomial
approximates the further exponentially decaying impulse response. This method
is applied to each subband. The implementation complexity can be reduced by

P h
h{n) s +0 +M
by
- b
I R R
f _______ r ----------- —> N
PP Y bug
Dy

Figure 6.28 Determining model parameters from the measured impulse response.

a factor 10 compared with the direct implementation of the broad-band impulse
response [Sch94]. However, owing to the group delay caused by the filter bank,
this method is not so suitable for real-time applications.



Chapter 7

Dynamic Range Control

Dynamic range control of audio signals is used in many applications to match the
dynamic behavior of the audio signal to different requirements. While recording,
dynamic range control protects the AD converter from overload or it is used in the
signal path to optimally use the full amplitude range of a recording system. For
suppressing low-level noise, so-called noise gates are used so that the audio signal
is passed through only from a certain level onwards. While reproducing music and
speech in a car, the dynamics have to match the special noise characteristic inside
a car.

x(n) x(n-D) y(n)
o ’ »  Delay >
X[dB Y
(dB] o] YiBl
G[dB]
Xpea(N)
Xpms(n) f(n)
Level Static ltack]
Measurement| "1 Curve eleasa
Time

Figure 7.1 System for dynamic range control.

Figure 7.1 shows a block diagram of system for dynamic range control. After
measuring the input level X [dB], the output level Y[dB] is affected by multiplying
the delayed input signal z(n) by a factor g(n) according to

y(n) = g(n) - z(n — D). (7.1)

The delay of the signal z(n) compared with the control signal g(n) allows predictive
control of the output signal level. This multiplicative weighting is carried out

207
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with corresponding attack and release time. Multiplication leads, in terms of a
logarithmic representation, to the addition of the weighting level G[dB] to the
input level X[dB] giving the output level Y[dB].

7.1 Static Curve

The relationship between input level and weighting level is defined by a static level
curve G[dB] = f(X[dB]). An example of such a static curve is given in Fig. 7.2.
Here, the output level and the weighting level are given as functions of the input
level.

X[ — X@ds ——
-90-80 706050 40302010 0 9080706050 40302010 0 _
sk 110 NT /ET C\ -10
.CS(LT—CT)[ 20 e N 20
/ g Bl -30 -30
ET 40 40
50 -50
NT, 60 60
AL 70 -70
.......... JES(ET'NT) -80 -80
-90 T -90 T
Y [dB] G [dB]

Figure 7.2 Static curve with the parameters LT=Limiter threshold, CT=Compressor
threshold, ET=Expander threshold and NT=Noise gate threshold.

With the help of a limiter, the output level is limited when the input level
exceeds the limiter threshold LT. All input levels above this threshold lead to a
constant output level. The compressor maps a change of input level on a certain
smaller change of output level. In contrast to a limiter, the compressor increases
the loudness of the audio signal. The expander increases changes in the input
level to larger changes in the output level. With this, an increase of the dynamics
for low levels is achieved. The noise gate is used to suppress low-level signals,
for noise reduction and is also used for sound effects like truncating the decay of
room reverberation. Every threshold used in particular parts of the static curve is
defined as the lower limit for limiter and compressor and upper limit for expander
and noise gate.

In the logarithmic representation of the static curve the compression factor R
(Ratio) is defined by the ratio of the input level change APy to the output level
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change AFp as given by

R =20 (7.2)
T APy’ '
X[ — X[ —
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1S 1 -20 -20
CR=3/1 JIR|
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Figure 7.3 Compressor Curve (Compressor Ratio CR/Slope CS).

With the help of Fig. 7.3 the straight line equation Y = CT + f{(X — CT) and

the compression factor
_X-CT

Y -CT
are obtained, where the angle 8 is defined as shown in Fig. 7.2. The relationship
between the ratio R and the slope S can also be derived from Fig. 7.3 and is
expressed as

R = tan 3¢, (7.3)

1
S = 1-—= 7.4
= (7.4
1
R = —. :
1-35 (7.5)
Typical compression factors are
R = limiter
R > 1 compressor (CR: compressor ratio) (7.6)
0 < R < 1 expander (ER: expander ratio) ’
R = 0 noise gate.
The transition from logarithmic to linear representation leads, from (7.3), to
_ 10810% (7.7)
1081052;", .

where & and g are the linear levels and ¢ denotes the linear compressor threshold.
Rewriting (7.7) gives the linear output level

i — 10%10810(ﬁ) — (i)%
cT cT

T ik (7.8)

w2,
I
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as a function of input level. The control factor g(n) can be calculated by the
quotient

g(n) =

(7.9)
cr

I
TN B
| I3H
SN’
=||I»-

With the help of tables and interpolation methods, it is possible to determine the
control factor without taking logarithms and antilogarithms. The implementation
described as follows, however, makes use of the logarithm of the input level and
calculates the control level G[dB] with the help of the straight line equation. The
antilogarithm leads to the value f(n) which gives the control factor g(n) with
corresponding attack and release time (see Fig. 7.1).

7.2 Dynamic Behavior

Besides the static curve of dynamic range control, the dynamic behavior in terms
of attack and release times plays a significant role in sound quality. The rapidity
of dynamic range control depends also on the measurement of PEAK and RMS
values [McN84, Sti86.

7.2.1 Level Measurement

Level measurements [McN84] can be made with the systems shown in Figs. 7.4
and 7.5. For PEAK measurement, the absolute value of the input is compared
with the peak value zpgax(n). If the absolute value is greater than the peak value,
the difference is weighted with the coefficient AT (attack time) and added to
(1 — RT) - oprax(n) (RT = release time). If the absolute value of the input is
smaller than the peak value, the new peak value is equal to (1 — RT) - zpgax (n).
The difference equation for the block diagram in Fig. 7.4 is given by

$PEAK(n) = (1 — AT - RT) * TprAk (n - 1) + AT . |$(n)| (710)
with the transfer function

H(z) = (7.11)
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Figure 7.4 PEAK measurement.

The RMS measurement shown in Fig. 7.5, uses the square of the input and
performs averaging with a first-order low-pass filter. The averaging coeflicient TAV
is determined in section 7.2.3. The difference equation is given by

Tams(n) = (1 — TAV) - Zpys(n — 1) + TAV - z*(n) (7.12)

with the transfer function
TAV

T1-(1-TAV)z L

(7.13)

H(z)

X s (M)

j -
z-1

Figure 7.5 RMS measurement (TAV = averaging coefficient).

7.2.2 Gain Factor Smoothing

Attack and release times can be implemented by the system shown in Fig. 7.6
[McN84|]. The attack coefficient AT or release coefficient RT is obtained by com-
paring the input control factor and the previous one. A small hysteresis curve
determines whether the control factor is in the attack or release status and hence
gives the coefficient AT or RT. The system also serves to smooth the control signal.
The difference equation is given by

gn)=(1-k)-gln-1)+k- f(n), (7.14)
with k = AT or k = RT and the corresponding transfer function leads to
k
H(z) = (7.15)

T 1-(1-k)zl
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Lef T

g(n)

z-1

Figure 7.6 Implementing attack and release time or gain factor smoothing.

7.2.3 Time Constants

If the step response of a continuous-time system is
gty =1—¢ /7 T = time constant, (7.16)

then sampling (step-invariant transform) the step response gives the discrete-time
step response

g(nTs) = e(nTs) — e "T5/7 =1 - 27 with 2 = e~ T/, (7.17)

The Z-transform leads to

z 1
Gle) = z—1 1- 2oz}
1— 24

= . 7.18
(z = 1)(1 — z0271) (7.18)

With the definition of attack time t, = tgg — t,g, we derive

01 = 1—eto/r —tio=0.17
0.9 = 1—e /7 ¢ tgo = 0.97. (7.19)

The relationship between attack time ¢, and the time constant 7 of the step re-
sponse is obtained as follows:

0.9/0.1 = elteomtio)/
ln(09/01) = (tgo - tlo)/’r
ta = tg() - th = 2.2T. (720)

Hence, the pole is calculated as

Zoo = e 22T s/t (7.21)




7.8 Implementation 213

A system for implementing the given step response is obtained by the relationship
between the Z-transform of the impulse response and the Z-transform of the step
response:
z—1
H(z) = . G(z). (7.22)
The transfer function can now be written as

(1= 200)27!
(1= 2027 1)’

H(z) = (7.23)

7.3 Implementation

The programming of a system for dynamic range control is described in the follo-
wing sections.

7.3.1 Limiter

The block diagram of a limiter is presented in Fig. 7.7. The signal zpgak(n) is
determined from the input with variable attack and release time. The logarithm
to the base 2 of this peak signal is taken and compared with the limiter threshold. If
the signal is above the threshold, the difference is multiplied by the negative slope
of the limiter LS. After this, the antilogarithm of the result is taken. The obtained
control factor f(n) is then smoothed with a first-order low-pass filter (SMOOTH).
If the signal Tppax(n) lies below the limiter threshold, the signal f(n) is set to
f(n) = 1. The delayed input z(n — D;) is multiplied by the smoothed control
factor g(n) to give the output y(n).

CX(H) DEL 1 x(n-D+) y(n)

glm)

X peak(n) LT -LS f{n)
PEAK G
PEAR L+ 100, --(\%)-4 —‘é —-(é)—. 26 L swootw

Figure 7.7 Limiter.

7.3.2 Compressor, Expander, Noise Gate

The block diagram of a compressor/expander/noise gate is shown in Fig. 7.8. The
basic structure is similar to the limiter. In contrast to the limiter, the logarithm of
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the signal zpys(n) 18 taken and multiplied by 0.5. The obtained value is compared
with three thresholds in order to determine the operating range of the static curve.
If one of the three thresholds is crossed, the resulting difference is multiplied by
the corresponding slope (CS, ES, NS) and the antilogarithm of the result is taken.
A following first-order low-pass filter provides the attack and release time.

x{(n} X(n-Dg) y(n
«L : DEL 2 5 ¢ o)
a(n)
Xrms(n) -CT -Cs f(n)
05 %_. cg G AT
RMS +—+ log 2 -+ % o— 2 — BT
ET ES
Range Detector
NT NS ES(ET-NT)
-t
0"

Figure 7.8 Compressor/expander/noise gate.

7.3.3 Combination System

A combination of a limiter that uses PEAK measurement, and a compressor/ex-
pander/noise gate that is based on RMS measurement, is presented in Fig. 7.9.
The PEAK and RMS values are measured simultaneously. If the linear threshold
of the limiter is crossed, the logarithm of the peak signal xpgax(n) is taken and
the upper path of the limiter is used for calculating the characteristic curve. If
the limiter threshold is not crossed, the logarithm of the RMS value is taken and
one of the three lower paths is used. The additive terms in the limiter and noise
gate paths result from the static curve. After going through the range detector,
the antilogarithm is taken. The sequence f(n) is smoothed with a SMOOTH filter
in the limiter case, or weighted with corresponding attack and release times of
the relevant operating range (compressor, expander or noise gate). By limiting
the maximum level, the dynamic range is reduced. As a consequence, the overall
static curve can be shifted up by a gain factor. Figure 7.10 demonstrates this with
a gain factor equal to 10 dB. This static parameter value is directly included in
the control factor g(n).
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Figure 7.9 Limiter/compressor/expander/noise gate.
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Figure 7.10 Shifting the static curve by a gain factor.

As an example, Fig. 7.11 illustrates the input z(n), the output y(n) and the
control factor g(n) of a compressor/expander system. It is observed that signals
with high amplitude are compressed and the ones with low amplitude are expan-
ded. An additional gain of 12 dB shows the maximum value of 4 for the control
factor g(n). The compressor/expander system operates in the linear region of the
static curve if the control factor is equal to 4. If the control factor is between 1
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Figure 7.11 Signals z(n), y{n) and g(n) for dynamic range control.

and 4, the system operates as a compressor. For control factors lower than 1, the
system works as an expander (3500 < n < 4500 and 6800 < n < 7900). The
compressor is responsible for increasing the loudness of the signal whereas the
expander increases the dynamic range for signals of small amplitude.
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7.4 Realization Aspects

7.4.1 Sampling Rate Reduction

In order to reduce the computational complexity, downsampling can be carried out
after calculating the PEAK/RMS value (see Fig. 7.12). As the signals Tppax (1)
and xxyus(n) are already band-limited, they can be directly downsampled by taking
every second or fourth value of the sequence. This downsampled signal is then
processed by taking its logarithm, calculating the static curve, taking the anti-
logarithm and filtering with corresponding attack and release time with reduced
sampling rate. The following upsampling by a factor of 4 is achieved by repeating
the output value four times. This procedure is equivalent to upsampling by a factor
4 followed by a sample-and-hold transfer function.

x{n) x(n-D) y(n)
o DELAY

r

g(n)

LT LS -CS(LT-CT)

Xpeak(N)
{»—-7 PEAK t—o

{4 log,,
T -CS
—»{ RMS 05
X rus(N) _)4 _.éﬁ

ET ES

AT/RT
SMOOTH f 4

7

Range Detector

]

NT NS ES(ET-NT)

3L

gy °

]

Figure 7.12 Dynamic system with sampling rate reduction.

The nesting and spreading of partial program modules over four sampling
periods is shown in Fig. 7.13. The modules PEAK/RMS (i.e. PEAK/RMS cal-
culation) and MULT (delay of input and multiplication with g(n)) are performed
every input sampling period. The number of processor cycles for PEAK/RMS and
MULT are denoted by Z1 and Z3 respectively. The modules LD(x), CURVE, 2*
and SMO have a maximum number of processor cycles of Z2 and are processed
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consecutively in the given order. This procedure is repeated every four sampling
periods. The total number of processor cycles per sampling period for the complete
dynamics algorithm results from the sum of all three modules.

0 1 2 3 4 5

; +—— T

1
-

2*1 ( RMS |RMS |RMS |RMS |RMS
* PEAK | PEAK [ PEAK | PEAK | PEAK
Z2 LD{X) | CURVE 2% | sMoO LD(X)| s ==
Z3 MULT | MULT [ MULT | MULT | MULT
vl
v
Cycles

Figure 7.13 Nesting technique.

7.4.2 Curve Approximation

Besides taking logarithm and antilogarithm, other simple operations like com-
parisons and addition/multiplication occur in calculating the static curve. The
logarithm of the PEAK/RMS value is taken as follows:

r = M.2F (7.24)
ld(z) = 1d(M)+E. (7.25)

First, the mantissa is normalized and the exponent is determined. The function
1d(M) is then calculated by a series expansion. The exponent is simply added to
the result.

The logarithmic weighting factor G and the antilogarithm 2 are given by

G = -E-M (7.26)
20 = o7F.97M (7.27)
(7.28)

Here, E is a natural number and M is a fractional number. The antilogarithm
2¢ is calculated by expanding the function 2=™ in a series and multiplication by
2-F_ A reduction of computational complexity can be achieved by directly using
tables for log and antilog.
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7.4.3 Stereo Processing

For stereo processing, a common control factor g(n) is needed. If different con-
trol factors are used for both channels, limiting or compressing one of the two
stereo signals causes a displacement of the stereo balance. Figure 7.14 shows a
stereo dynamic system in which the sum of the two signals is used for calcula-
ting a common control factor g(n). The following processing steps of measuring
the PEAK/RMS value, downsampling, taking logarithm, calculating static curve,
taking antilogarithm attack and release time and upsampling with a sample-and-
hold function remain the same. The delay {DEL) in the direct path must be the
same for both channels.

yr (n)

xRl DEL > 8)——0

b

h 4

Oow
PEAK =2 G AT
- e g L HE e e

xL(n) é'@ yL(n)
° DEL -

Figure 7.14 Stereo dynamic system.




Chapter 8

Sampling Rate Conversion

Several different sampling rates are established for digital audio applications. For
broadcasting, professional and consumer audio, sampling rates of 32, 48 and 44.1
kHz are used. Moreover, other sampling rates are derived from different frame rates
for film and video. In connecting systems with different uncoupled sampling rates,
there is a need for sampling rate conversion. In this chapter, synchronous sampling
rate conversion with rational factor L/M for coupled clock rates and asynchronous
sampling rate conversion will be discussed where the different sampling rates are
not synchronized with each other.

8.1 Synchronous Conversion

Sampling rate conversion for coupled sampling rates by a rational factor L/M can
be performed by the system shown in Fig. 8.1. After upsampling by a factor L,
anti-image filtering at L fs is done followed by downsampling by factor M. Since
after upsampling and filtering only every Mth sample is used, it is possible to
develop efficient algorithms that reduce complexity. In this respect two methods
are in use; one is based on a time-domain interpretation [Cro83] and the other one
[Hsi87] uses Z-domain fundamentals. Owing to its computational efficiency, only
the method in the Z-domain will be considered.

Starting with the finite impulse response h(n) of length N and its Z-transform

N-1

H(z) = Z h{n)z™", (8.1)

n=0

221
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w(k) v(k)
x(n) ——| fL h(k) o (M y(m)

fg Lfg Lfs f50=(L/M)fS

Figure 8.1 Sampling rate conversion by factor L/M.

the polyphase representation [Cro83, Vai93, Fli94] with M components can be
expressed as

M-1
H(z) = Z 2 R E (M) type 1 (8.2)
k=0
with ex(n) = h(nM+k) , k=0,1,.,.M-1 (8.3)
or
M—1
H(z) = Z Z~M=-1=k) p, (M) type 2 (8.4)
k=0
with rg(n) = h(nM—-%k) , k=0,1,..,M—1 (8.5)

The polyphase decomposition as given in (8.2) and (8.4) is denoted as type 1 and
2 respectively. The type 1 polyphase decomposition corresponds to a commuta-
tor model in the anti clockwise direction whereas the type 2 is in the clockwise
direction. The relationship between R(z) and E(z) is described by

Ri(2) = Epoq-1(2). (8.6)

With the help of the identities [Vai93] shown in Fig. 8.2 and the decomposition
(Euclid’s theorem)

7271 = g PLyaM (8.7)

it is possible to move the inner delay elements of Fig. 8.3. Equation (8.7) is valid
if M and L are prime numbers. In a cascade of upsampling and downsampling,
the order of functional blocks can be exchanged (see Fig. 8.3b).

— & H(ZM M = ] M o Hiz) |—»

— o HEzL) —s H(z) o L —

Figure 8.2 Identities for sampling rate conversion.
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Figure 8.3 Decomposition in accordance with Euclid’s theorem.

The use of polyphase decomposition can be demonstrated with the help of an
example for L. = 2 and M = 3. This implies a sampling rate conversion from
48 kHz to 32 kHz. Figures 8.4 and 8.5 show two different solutions for polyphase
decomposition of sampling rate conversion by 2/3.

x(n} ———»

x{n) ——

1 1
] 1
! 1
A2 : H(z) » }3 s y(m)
[}
- |
12 §3 E (@) y(m)
S
y3 > E1(z)
,
o }3 o E,2)

Figure 8.4 Polyphase decomposition for downsampling L/M = 2/3.
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Further decompositions of the upsampling decomposition of Fig. 8.5 are demon-
strated in Fig. 8.6. First, interpolation is implemented with a polyphase decompo-

‘3 ——s  y(m)

pad
E-3
3
=
—
N
x
N
fas

x(n) » E (2 w42 3 —— ¥m)

IV

> E1(z) o f2

Figure 8.5 Polyphase decomposition for upsampling L/M = 2/3.

1 1

sition and the delay z~! is decomposed to z=! = 2722%. Then, the downsampler
of factor 3 is moved through the adder into the two paths (Fig. 8.6b) and the de-
lays are moved according to the identities of Fig. 8.2. In Fig. 8.6c, the upsampler
is exchanged with the downsampler and in a last step (Fig. 8.6d) another poly-
phase decomposition of Fy(z) and Ej(z) is carried out. The actual filter operations
Eor(z) and Eyp(z) with & =0, 1,2 are performed at % of the input sampling rate.

8.2 Asynchronous Conversion

Plesiochronous systems consist of partial systems with different and uncoupled
sampling rates. Sampling rate conversion between such systems can be achieved
through a DA conversion with the sampling rate of the first systems followed by an
AD conversion with sampling rate of the second system. A digital approximation of
this approach is made with a multirate system [Lag81, Lag82a,b,c, Lag83, Ram82,
Ram84]. Figure 8.7a shows a system for increasing the sampling rate by a factor L
followed by an anti-image filter H(z) and a resampling of the interpolated signal
y(k). The samples y(k) are held for a clock period (see Fig. 8.7¢) and then sampled
with output clock period Ts, = 1/fs,. The interpolation sampling rate must be
increased so far that the difference of two consecutive samples y(k) is smaller than
the quantization step (. The sample-and-hold function applied to y(k) suppresses
the spectral images at multiples of Lfs (see Fig. 8.7b). The now obtained signal
is a bandlimited continuous-time signal which can sampled with output sampling

rate fs,.
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Figure 8.6 Sampling rate conversion by factor 2/3.

)2

For the calculation of the necessary oversampling rate, the problem is conside-
red in the frequency-domain. The sinc-function of a sample-and-hold system (see
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©) y(k)

k k+1 k+2 k+3

' Figure 8.7 Approximation of DA/AD conversions.

Fig. 8.7b) at frequency f=(L- %)fs is given by
sin (r’r}%)

xf
Lfs

sin ("(L—"é)fs )

E(f) =

Lfs
W(L——;)fs
Lfs
sin (7 — )

= oAl (8.10)

B = ol (5.1)

Q

(8.12)

11
2L -1~ 2L°

Q

(8.13)

For a given word-length w and quantization step (), the necessary interpolation
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rate L is calculated by:

Q 1
3 2 3T (8.14)

9~ (w—1} 1
5 > 5T (8.15)
L > vl (8.16)

For a linear interpolation between upsampled samples y(k), we can derive

sin? (2L
- Ly
E(f) = ——~_€_ 2) (8.17)
Lfs
()
o2 (n(L—3)f
sin ( 7 S)
= - 3 (8.18)
7T(L— 2 )f_g)
( Lfs
R~ ! (8.19)
~t (2“[_1)2 . .
With this it is possible to reduce the necessary interpolation rate to
Ly >2% 7% (8.20)

Figure (8.8) demonstrates this with a two-stage block diagram. First, interpolation
up to a sampling rate L; fs is performed by conventional filtering. In a second stage
upsampling by factor Ly is done by linear interpolation. The two-stage approach
must satisfy the sampling rate L fs = (L, L2) fs.

y(k)

x(n) —»{ tL, [{H{2) (] L, =H() —b—é/-HY(m)
o]

Figure 8.8 Linear interpolation before virtual sample-and-hold function.

The choice of the interpolation algorithm in the second stage enables the re-
duction of the first oversampling factor. More details are discussed in section 8.2.2.

8.2.1 Single-stage Methods

Direct conversion methods implement the block diagram [Lag83, Smi84, Par90,
Par9la,b, Ada92, Ada93] shown in Fig. 8.7a. The calculation of a discrete sample
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on an output grid of sampling rate fs, from samples z(n) at sampling rate fs,,
can be written as

DFT[z(n —a)] = X(e/%)e o8
= X(e/H, (), (8.21)

where 0 < a < 1. With the transfer function
H,(e'9) = e72% (8.22)

and the properties
: 1 0<f £Q
2y >~ > Nibe
H(e™) = { 0 Q<0 <7 (8.23)

the impulse response is given by

he = h{n — a) = Q? Si’g?(i”_;?)]. (8.24)

From (8.21) the convolution sum
zn—a) = Y z(m)h(n-a-m) (8.25)
- Y amiermemsl )

is obtained. Figure 8.9 illustrates this convolution in the time-domain for a fixed
.

X(n) x(n+1)
x(n-1) X(n-ﬂ‘.) "_____——————V"—_ x(t)

x(n-2) :

I

I

i sinc[Q ¢ (n-a))

1

i J\/\/

La_ |

I . n

n-2 n-1 o N n+1

Figure 8.9 Convolution sum in the time-domain.

Fig. 8.10 shows the coefficients h(n — «a;) for discrete o; (i = 0,...,3) which
are obtained from the intersection of the sinc-function with the discrete samples




8.2 Asynchronous Conversion 229

sinc[Qg(n-a;)]

e

n+1

Figure 8.10 Convolution sum for different ;.

In order to limit the convolution sum, the impulse response is windowed, which

gives
Qc sin[Q(n — o))

h — ;) = =0,..., . .
win —a;) = w(n) T O —a) n=20 2M (8.27)
From this, the sample estimate
M
tn-a)= Y  a(mhw(n—oa ~-m) (8.28)

m=—M

results. A graphical interpretation of the time-variant impulse response which de-
pends on «; is shown in Fig. 8.11. The discrete segmentation between two input
samples into N intervals, leads to NV partial impulse responses of length 2M + 1.

W

Pttt wos
Pttt s

PErrtrrtit et rrttt o
Mty o

Figure 8.11 Sinc-function and different impulse responses.

If the output sampling rate is smaller than the input sampling rate (fs, < fs,),
band-limiting (anti-aliasing) to the output sampling rate has to be done. This can
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be achieved with factor 8 = %Q— and leads, with the the scaling theorem of the
I

Fourier transform, to

_ B, sin[BQ(n — )]

hln —a) T BQAn - a)

(8.29)

This time-scaling of the impulse response has the consequence that the number of
coefficients of the time-variant partial impulse responses is increased. The num-
ber of required states also increases. Figure 8.12 shows the time-scaled impulse
response and elucidates the increase of the number M of the coefficients.

A

Pttt ittt e
Pttt bttt s
LA O O N R A N

Figure 8.12 Time-scaled impulse response.

8.2.2 Multistage Methods

The basis of a multistage conversion method [Lag81, Lag82, Kat85, Kat86] is
shown in Fig. 8.13a and will be described in the frequency-domain as shown in
Fig. 8.13b-d.

The increase of the sampling rate up to the rate Lfs before the sample-and-
hold function is done in four stages. In the first two stages, the sampling rate
is increased by a factor 2 followed by an anti-imaging filter (see Fig. 8.13b,c),
which leads to a 4 times oversampled spectrum (Fig. 8.13d). In the third stage,
the signal is upsampled by a factor 32 and the image spectra are suppressed (see
Fig. 8.13d,e). In the fourth stage (Fig. 8.13¢) the signal is upsampled to a sampling
rate of L fg by factor 256 and a linear interpolator. The sinc?-function of the linear
interpolator suppresses the images at multiples of 128 f s up to the spectrum at L fs.

——
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Figure 8.13 Multistage conversion - frequency-domain interpretation.

The virtual sample-and-hold function is shown in Fig. 8.13f, where resampling at
the output sampling rate is performed. A direct conversion of this kind of cascaded
interpolation structure requires anti-image filtering after every upsampling with
the corresponding sampling rate. Although the necessary filter order decreases
owing to a decrease of requirements for filter design, an implementation of the
filters in the third and fourth stages is not possible directly. After a suggestion by
Lagadec [Lag82c] the measurement of the ratio of input to output rate is used to
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control the polyphase filters in the third and fourth stage (see Fig. 8.14a, CON =
control) to reduce complexity. Figures 8.14b..d illustrate an interpretation in the
time-domain. Figure 8.14b shows the interpolation of three samples between two

a)
< oy
x(n) — $2 $2 432 v0 4256 - "____.. y(m)
fSo
b}  x(n)
' © T O
1 —+ —t— —t— } > N
0 1
c) y(m)
—+ 1 t t —+— —t —+ — M
0 1
d) vl

Figure 8.14 Time-domain interpretation.

input samples z(n) with the help of the first and second interpolation stage. The
abscissa represents the intervals of the input sampling rate and the sampling rate
is increased by factor 4. In Fig. 8.14c the 4 times oversampled signal is shown. The
abscissa shows the 4 times oversampled output grid. It is assumed that output
sample y(m = 0) and input sample z(n = 0) are identical. The output sample
y(m = 1) is now determined in such a form that with the interpolator in the
third stage only two polyphase filters just before and after the output sample need
to be calculated. Hence, only 2 out of a total of 31 possible polyphase filters are
calculated in the third stage. Fig. 8.14d shows these two polyphase output samples.
Between these two samples, the output sample y(m = 1) is obtained with a linear
interpolation on a grid of 255 values.
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Instead of the third and fourth stages, special interpolation methods can be
used to calculate the output y(m) directly from the 4 times oversampled input
signal (see Fig. 8.15) [Sti91 , Cuc9l, Liu92]. Section 8.3 is devoted to different

'SI » CON |« 'SO
! |
xn) — 42 o Hi@ = 12 | Ha2) b2t s y(m)

Figure 8.15 Sampling rate conversion with interpolation for calculating coefficients of
a time-variant interpolation filter.

interpolation methods which allow a real-time calculation of filter coefficients.
This can be interpreted as time-variant filters in which the filter coefficients are
derived from the ratio of sampling rates. The calculation of one filter coefficient
set for the output sample at the output rate is done by measuring the ratio of
input to output sampling rate as described in the next section.

8.2.3 Control of Interpolation Filters

The measurement of the ratio of input and output sampling rate is used for con-
trolling the interpolation filters [Lag82a]. By increasing the sampling rate by a
factor of L the input sampling period is divided into L = 2*~! = 215 parts for
a signal word-length of w = 16 bits. The time instant of the output sample is
calculated on this grid with the help of the measured ratio of sampling periods
Ts, /Ts, as follows.

A counter is clocked with Lfs, and reset by every new input sampling clock.
A sawtooth curve of the counter output versus time is obtained as shown in Fig.
8.16. The counter runs from 0 to L — 1 during one input sampling period. At time
t;—2 which corresponds to counter output z;_s, the output sampling period T,
starts, and stops at time t;_; with counter output z;_;. The difference between
both counter measurements allows the calculation of the output sampling period
Ts, with a resolution of Lfg,.

The new counter measurement is added to the difference of previous counter
measurements. As a result, the new counter measurement is obtained as

ti = (tic1 +Tsp) ® T, . (8.30)

The modulo operation can be carried out with an accumulator of word-length
w — 1 = 15. The resulting time ¢; determines the time instant of the output
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Figure 8.16 Calculation of ¢;.

sample at the output sampling rate and therefore the choice of the polyphase filter
in a single-stage conversion or the time instant for a multistage conversion.

The measurement of T's, /T, is illustrated in Fig. 8.17:
e The input sampling rate fg, is increased to Mz fs, using a frequency multi-
plier where Mz = 2%. This increased input clock by the factor Mz triggers a

w bit counter. The counter output z is evaluated every My output sampling
periods.

e Counting of Mo output sampling periods.

¢ Simultaneous counting of the M; input sampling periods.

< dy —t

) 1
| Y M1
: | -0

I

1

|

|

S0 MU‘U‘LHIU‘UUU—LHI

- dp =MgTg,

0

Figure 8.17 Measurement of Ts, /T, .

The time intervals d; and da (see Fig. 8.17) are given by

Z— 20 Z — 20
—1Ts, = (M T 31
My Sy ( I+ M )51 (83)

d2 = MoTs,, (8.32)

dy = MTs, +
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and with the requirement d, = d» we can write

z— 2z
MoTs, = (My+ %)\Ts,
Z
Tﬁ _ M[+(Z—z0)/MZ:MzM1+(Z—Zo) (833)
T, Mo MzMo ' '
e Example : w=0—-> Mz =1
Ts, My
Ts. = 5T (8.34)

With a precision of 15 bits, the averaging number is chosen as Mgy = 2!°
and the number M| has to be determined.

e Example 2: w =8 = M, = 2%

Ts, _ ZSMI + (z - ZO)
T, 2897

(8.35)

I

With a precision of 15 bits, the averaging number is chosen as Mp = 27 and
the number My, as well as the counter outputs, has to be determined.

The sampling rates at the input and output of a sampling rate converter can be
calculated by evaluating the 8 bit increment of the counter for each output clock
with

TSO fSI
2= —Mgz = 256 8.36
TS( d fSo ( )

as seen from Table 8.1.

Table 8.1 Counter increments for different sampling rate conversions.

| Conversion/kHz | 8 bit counter increment. |

32 - 48 170
441 — 48 235
32 - 441 185
48 - 441 278
48 - 32 384
41 - 32 352
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8.3 Interpolation Methods

In the following sections, special interpolation methods are discussed. These me-
thods enable the calculation of time-variant filter coefficients for sampling rate
conversion and need an oversampled input sequence as well as the time instant of
the output sample. A convolution of the oversampled input sequence with time-
variant filter coefficients gives the output sample at the output sampling rate. This
real-time computation of filter coefficients is not based on popular filter design me-
thods like windowing or the Remez Exchange Algorithm [Rab75]. On the contrary,
methods are presented for calculating filter coeflicient sets for every input clock
cycle where the filter coeflicients are derived from the distance of output samples
to the time grid of the oversampled input sequence.

8.3.1 Polynomial Interpolation

The aim of a polynomial interpolation [Liu92] is to determine a polynomial

pn(z) = ax’ (8.37)

of Nth order representing exactly a function f(z) at N + 1 uniformly spaced z;,

ie. py(z;) = f(z;) = y; for i = 0,...,N. This can be written as a set of linear
equations
1 zo 22 - z¥7rao Yo
1 o 22 - 2V | | & N
. =1 . |. (8.38)
1 N :13% :L% an YN

The polynomial coefficients a; as functions of yo ...yn are obtained with the help
of Cramer’s Rule according to

ith column

2 N
1 IO xO e yo .. xo
1 zl I% e yl LY xIN
2
1 xN IN . yN + e wx ]
a; = , i=0,1,...,N. (8.39)
1 20 a2 - z
1z, z2¥ - Y
1 zy zi =¥
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For uniformly spaced z; = 1 with ¢ = 0,1,..., N the interpolation of an output
sample with distance « gives

N

yin+a) = Z ai{n + a)’. (8.40)
i=0

In order to determine the relationship between the output sample y(n + a) and
¥;, a set of time-variant coefficients ¢; needs to be determined such that
N/2
y(n+a)= Z ci{@)y(n +1). (8.41)
i=—N/2

The calculation of time-variant coefficients c;(a) will be illustrated by an example.
Example: Figure 8.18 shows the interpolation of an output sample of distance a
with N = 2 and using 3 samples which can be written as

2

yn+a) = Z ai(n + a)t. (8.42)
i=0
y(n+a)
—
yan| YO YD
a
—’: — X

X(n-1) x(n} x(n+1)

Figure 8.18 Polynomial interpolation with 3 samples.

The samples y(n + i), with i = —1,0, 1, can be expressed as

2
ylin+1) = Zai(n+1)i a=1
i=0
2 .
y(n) Zaﬂf a=0
i=0
2 .
yn—-1) = > an-1" a=-1 (8.43)
i=0
or in matrix notation
1 (n+1) (n+1)?%] [ao y(n+1)
1 n n? a | =1 yn) |. (8.44)

1 (n=1) (n—-12] |ag y(n—1)
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The coefficients a; as functions of y; are then given by

ag 7_4"2_'_12 1 —n? @ y(n + 1)
a1 — | _ 2n2—1 m _ 2n2+l y(n) ,
-1 3 y(n—1)

such that

y(n+a) =ag+ a;(n + a) + az(n + ).

is valid. The output sample y(n + «) can be written as

yn+a) = Y @yl +i)

1
= cay(n—1) +coy(n) + ay(n +1).

1

Equation (8.46) with a; from Equation (8.45) leads to

vinsa) = |Gyt 1) =y + gotn = D) (04 P
[— 2n2— 1y(n + 1) + 2ny(n) — n+ 1
n(n —1) n(n+ 1)

y(n+ 1) + (1 = nHy(n) +

2 2

(8.45)

(8.46)

(8.47)

sin= 1|+ 0)

y(n—1). (8.48)

Comparing the coefficients from (8.47) and (8.48) for n = 0 gives the coeflicients

o = —(a=1(a+1)=1-a?

1
g = ia(a +1).
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8.3.2 Lagrange Interpolation

Lagrange interpolation for N + 1 samples makes use of the polynomials [;(z) which
have the following properties (see Fig. 8.19):

1 i=k
L) = 0 = { 0  elsewhere - (8.49)
500 -
/\ /Ti___: -
X0 X4 X2 Xi XN
Figure 8.19 Lagrange polynomial.
Based on the zeros of the polynomial /;(x), it follows that
L{z) =ai{x —xg).. (- xim1)(x = Tip1) ... (T —TpN). (8.50)
With [;(z;) = 1 the coefficients are given by
(i) ! (8.51)
a;(x;) = : .
e (i —x0) ... (s — i1 )@ — Zig1) .. (@5 — 2N)
The interpolation polynomial is expressed as
N
pv(z) = Y L@y (8.52)
=0
= lp(@)yo + ...+ In(z)yn.
With a = H;.V:O(:c — z;), (8.50) can be written as
a 1 H;'Vzo I =T
L(z) = a———=—g -y
T Jlizepe®i—x; T
Ay
= [ —= (8.53)
j=0,i Tt T Y
For uniformly spaced samples
x; = xg + th (8.54)

and with the new variable « as given by

T =T+ ah (8.55)
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we get
z—x; (vo+ah)—(zg+jh) a—j
Ti— Xy o (210 +ih) - (LE() +]h) - ’i—j
and hence
N o
L) = [ 5=
=0 v d

For even N we can write

j=— Bt
and for odd N
N+1
3 a—
L) = ]l =5

j=— gt gt

The interpolation of an output sample is given by

N/2
y(n+a) = Z Li{a)y(n +1).
i=—N/2
Example: N = 2, 3 samples
- o — 7 1
I_1(z(a) = | ]‘[ ;- sofa=1)
j=—13#-1
1
a —
biz(@) = ] =—2=-(a-Da+1)=1-a>
j==1#0 0 d
: a—7 1
hiz(a)) = . H 1= = §a(a+1).
j=-1,j#1

8.3.3 Spline Interpolation

(8.56)

(8.57)

(8.58)

(8.59)

(8.60)

The interpolation using piecewise defined functions that only exist over finite in-

tervals is called Spline Interpolation [Cuc91].

A B-Spline MY (z) of Nth order using m + 1 samples is defined in the interval

[Tk, - Thm] bY
k+m

MY (z) = Z aipi(x)
i=k

(8.61)
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with the truncated power functions

¢i(z) = (z —z;)¥ = { ?z _ )V : ; ;E:: . (8.62)

In the following M{¥(z) = Y i~,ai¢:(z) will be considered for k = 0 where
My (z) = 0 for = < z9 and M{¥(z) = 0 for 2 > z,,. Figure 8.20 shows the
truncated power functions and the B-Spline of Nth order. With the definition of

!
Bl b0 by B} |

A/

X Xq Xg Xm Xm+1

Xg X1 X2 Xm Xma1
Figure 8.20 Truncated power functions and the B-Spline of Nth order.

the truncated power functions we can write

MY (z) = aodo(z)+ar1di(z) + ...+ amdm(z)

= ao(m—mo)f+a1($—9:1)f+...+am(z——mm)f (8.63)

and after some calculations we get

MY (z) =  aole) +eaz) o+ 4 envoimezV T +2Y)

+a1(a:iV —f—clrE{V_lx +. o teyomzV Tl + :L‘N)

tan(zN + ezl o4+ +eyiizne™V T 4 2). (8.64)

With the condition M{¥(z) = 0 for £ > z.,, the following set of linear equations
can be written with (8.64) and the coefficients of the powers of z:

Ty Ty

1 1 e 1 ag 0

Zp IT1 - ZTm a 0
2 2 2

g I3 T, az | = |0 (8.65)
N N zﬁ A 0
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The homogeneous set of linear equations has non-trivial solutions for m > N. The
minimum requirement results in m = N + 1. For m = N + 1, the coefficients
[Boe93] can be obtained as follows

ith column

1 1 1
Zo T Zo R 0 P J:N—{—l
I(I)V Q;flV :,;éV R $%+1 .
a; = , 1=0,1,...,N+1. (8.66)
1 1 1 1
Zo I ) TN 4
R AR 7 AR Vi
This can be rewritten as
1
a; = N+l (867)
H;:O,i;éj(zi - z;)
and hence Nl
+ N
(JJ - 1157;)
M (2) =Y —x = S (8.68)
+1
i=0 Hj:O,i#j(mi — ;)
For some & N
eIV + N
I —I;
MY (z)= > (& = 71)y (8.69)

i=k H;y:tf#j(mi—mj)
Since the functions M} (x) decrease with increasing N, a normalization of the
form

N (z) = (zryver — 2e) MY (8.70)

is performed. The next example illustrates the computation of B-Splines.
Example: N = 3, m = 4, 5 samples
With the help of the matrix

U= |23 z? 2% 22 22 (8.71)
zp @y 23 T3

with corresponding determinant
detU = (CE4 - 1173)(1?4 - .’122)(2:4 - 1131)(1124 - 1170) R

(z3 — 72)(z3 — =1)(T3 — To) (72 — T1)(T2 — To)(z1 — To)
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and the matrix

1 1 1 1 1

Iy r T3 T3 T4

M = T z? T3 z3 T3
z3 T3 z3 3 T3

¢o(x) ¢1(z) dalz) ¢3(z) ¢a(x)

with corresponding determinant

(
(
(z3 — w0
(
(

detM = +¢o(z)[(z4 —z3)(T4 — 22) (24 — T1)( )
—1(2)[(z4 — 23) (24 — T2) (T4 — 20)( )
+¢2(z)[(z4 — 3) (24 — 21) (T4 — T0) (T3 — 1)
—¢3(z)[(za — 22) (@4 — 21)(T14 — T0)( )
+¢4(z)[(z3 — 22)(23 — 71)(T3 — T0) (T2 ~ 1)
the B-spline can be expressed as
1\/1(‘;\’(:1:) = (clizttII\J/I
The coeflicients can be derived by
GO
‘ det U
and hence we get
I 1
¢ («’Eo - I4)(~’C0 - $3)(fl?o - $2)(Io - 5131)
1
“ T (@ - za)(@1 — 78) (@1 - 72) (21 — 20)
1
® T (s — z4)(w2 — 73) (w2 — 31) (22 — 20)
1
® T (o —24)(ws — 22)(ws — 71) (25 — 70)
1
a4 =

——

(x4 — x3)(24 — T2)

Iz — Il)(l‘z - Sb“o)'

243

(8.72)

z3 — z2)(T3 — 71) (22 — 71)]
T3 — z2)(23 — x0) (22 — T0)]
T, — Zo)]
zo — x1)(x2 — zo)(z1 — To)]

T) — To)]

(8.73)

(8.74)

Figure 8.21a,b shows the truncated power functions and their summation for cal-

culating N3(z). In Fig. 8.21c the horizontally shifted N?(z) are depicted.

A linear combination of B-splines is called a spline. Figure 8.22 shows the
interpolation of sample y(n + @) for splines of second and third order. The shifted
B-splines NV (z) are evaluated at the vertical line representing the distance a.
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a) !
j jj j /
0 .

b 1
! apt/_NgW  faysy
-1
0 5
c) 1

N N2 NP N Nl

-1

0 2 I 6 8
Figure 8.21 Third-order B-spline (N = 3, m = 4, 5 samples).

With sample y(n) and the normalized B-splines N;}¥(x), the second- and third-
order splines are expressed as

1

yn+a) =Y yn+i)N2_ (o) (8.75)
=1

y(n+a) = Z y(n +9Na_pp4(q). (8.76)
i=—1

Owing to the symmetrical characteristic of B-splines, the time-variant coefficients
of the second-order B-spline can be derived:

N2(a) = h(1) = —%az (8.77)
Ni(a) = h(2) = —%(1 +a)? + %oﬁ (8.78)
Ni(a)=h(3) = —%(1 —a)? (8.79)
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y(n+a)
1 h| n@) (e .
e i.i

N
\

A

X X, X, Xq '® Xg g X5 Xg
X3 *n2 Xn X Xne1 Xna2 Xne3 Xqed Xnes
NF) N3 N3(X)

y(n+a)

—94—9
/ h@)| n@| 1 (h@ [ .
/‘ o |l

s

Xg X @ x3) i(%a) (x5) g X7 X8

Xpa %2 %1 Xp Xe1 Xne2 Xn+3 Xn+a Xnes

— X

Ng) NT() N3(x) N5(x)

Figure 8.22 Interpolation with B-splines of second and third order.

The time-variant coefficients of a third-order B-spline are given by

N3(a)=h(1) = é—a?’ (8.80)
N3(a) = h(2) = %(1 +a)® - §a3 (8.81)
N3a) = h(3) = é(Q —a) - %(1 —a)? (8.82)
Ni(a) =h(4) = %(1 —a)® (8.83)
Higher-order B-splines are given by:
y(n+a)= > yln+i)Ny_5,(a) (8.84)

i==2
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3
y(n+a)= Z y(n +1)N>_5.4(a) (8.85)
yn+a) = 3 yln+ )N, (a). (8.36)
1=—3

Similar sets of coeflicients can be derived here as well. Figure 8.23 illustrates this
for fourth- and sixth-order B-splines.

y(n+a)

P e G

J

>
.

|

X3 Xp2 Xpg Xp Xnet Xns2 Xpa3 Xpeda Xpas

NA) NG N1 N3 N3(x)

)\
|
/3

<
NN
)
fe=al

t
o1 Xne2

Xnd  Xpaa Xp2 Xpa X

NSO NEOO NSO NSO NS00 NS0 NE)

Figure 8.23 Interpolation with B-splines of fourth and sixth order.

Generally, for even orders we get

N/2

yn+a)= Y yn+i)NY npyila) (8.87)
i=—N/2
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and for odd orders

{N+1)/2

yin+a)= Y Y+ ONY vy jeeil@). (8.88)
i:—(N-—l)/2

For the application of interpolation the properties in the frequency-domain are
important. The zero-order B-spline is given by

1 0 z <0
N(z) =) aigi(x)=q 1 0<z<1 (8.89)
i=0 0 z2>1

and the Fourier transform gives the sinc-function in the frequency-domain. The
first-order B-spline given by

. 0 <0
iy 0<z<1
Ny (2) =2Zai¢i($) =4 i1, 1<p<o (8.90)
i= 2 -
0 0 x> 2

leads to a sinc®-function in the frequency-domain. Higher-order B-splines can be
derived by repeated convolution [Chu92] as given by

NN (z) = N°(z) » NV -1(z). (8.91)
Thus, the Fourier transform leads to
FT[NY (z)] = sincV (). (8.92)

With the help of the properties in the frequency-domain, the necessary order of
the spline interpolation can be determined. Owing to the attenuation properties
of the sinc ! (f)-function and the simple real-time calculation of the coefficients,
spline interpolation is well suited to time-variant conversion in the last stage of a
multistage sampling rate conversion system [Z5194b).



Chapter 9

Data Compression

For transmission and storage of audio signals, different methods for compressing
data have been investigated besides the PCM representation. Data compression
can be divided into two types: lossless and lossy data compression.

9.1 Lossless Data Compression

Lossless data compression is based on linear prediction followed by entropy coding
[Jay84] as shown in Fig. 9.1:

e Linear Prediction. A quantized set of coefficients P for a block of M samples
is determined which leads to an estimate #(n) of the input sequence z(n).
The aim is to minimize the power of the difference signal d(n) without any
additional quantization errors, i.e. the word-length of the signal #(n) must
be equal to the word-length of the input.

e Entropy Coding. Quantization of signal d(n) due to the probability density
function of the block. Samples d(n) of greater probability are coded with
shorter data words whereas samples d(n) of lesser probability are coded with
longer data words [Huf52].

e Irame Packing.

The attainable compression rates depend on the statistics of the audio signal and
allow a compression rate of up to 2 [Bra92, Cel93].

249
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Coder

_ P(M)
x(n) Linear Mual‘triglex

Prediction | %(n) Quantization
1 d_(n) and Frame
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Statistical
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Lo Xc(n)
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X¢(M)o———aiDMU Decoding [—( —»o x{n)
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Figure 9.1 Lossless data compression based on linear prediction and entropy coding.

SQAM 67 (Mozart), fixed c9de table i

t[s]

<

t[s]

Figure 9.2 Lossless data compression (Mozart): word-length [bit] versus time
(entropy - - , linear prediction with Huffman coding —).

Figure 9.2 illustrates examples of the necessary word-length for lossless data
compression [Blo95, Sqa88]. Besides the entropy of the signal, results for linear
prediction followed by Huffman coding [Huf52] are presented. Huffman coding is
carried out with a fixed code table [Pen93] and a power-controlled choice of adapted
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code tables. It is observed from Fig. 9.3 that for high signal powers, a reduction
of word-length is possible if the choice is made from several adapted code tables.

SQAM 66 (Slvravinsky), fixed code lab'le

bit

t[s]
. SQAM 66 (Slrayinsky)_adaptcd code tables .

bit

t[s]

Figure 9.3 Lossless data compression (Stravinsky): word-length [bit] versus time
(entropy - - , linear prediction with Huffman coding — ).

Lossless compression methods are used for storage media with limited word-
length (16 bit in CD and DAT) which are used for recording audio signals of higher
word-lengths (> 16 bit). Further applications are in the transmission and archiving
of audio signals.

9.2 Lossy Data Compression

Significantly higher compression rates (of factor 4 to 8) can be obtained with lossy
coding methods. Psychoacoustic phenomena of human hearing are used for signal
compression. The fields of application have a wide range, from professional audio
like source coding for DAB to audio transmission via ISDN and home entertain-
ment like DCC and MiniDisc.

An outline of the coding methods [Bra94] is standardized in an international
specification ISO/IEC 11172-3 [{ISO92], which is based on the following processing
(see Fig. 9.4).

e Subband decomposition with filter banks of short latency time
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Calculation of psychoacoustic model parameters based on
short-time FEF'T

Dynamic bit allocation due to psychoacoustic model parameters
(signal-to-mask ratio SMR;)

Quantization and coding of subband signals

Multiplex and frame packing.

Coder
X | .
Analysis | | | Quantization | | Mualtll%lex
x(n) t  Filter | anFj st Xc
Bank |xy' Coding _l. Packing
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Decoding | XN

Figure 9.4 Lossy data compression based on subband coding and psychoacoustic models.

Owing to lossy data compression, post-processing of such signals or several
coding/decoding steps is associated with some additional problems. The high com-
pression rates justify the use of lossy data compression techniques in applications
like transmission. In the next section, basic principles of psychoacoustics are pre-
sented followed by a description of the ISO-MPEG1 audio coding techniques.

9.3 Psychoacoustics

The results of psychoacoustic investigations by Zwicker [Zwi82, Zwi90] form the ba-
sis for audio data compression based on models of human perception. These coded
audio signals have a significantly reduced data rate compared with the linearly
quantized PCM representation. The human auditory system analyzes broad-band
signals in so-called critical bands. The aim of psychoacoustic coding of audio signals
is to decompose the broad-band audio signal into subbands which are matched to
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the critical bands and then perform quantization and coding of these subband si-
gnals [Joh88a, Joh88b, Thei88]. Since the perception of sound below the absolute
threshold of hearing is not possible, subband signals below this threshold need
neither be coded nor transmitted. In addition to the perception in critical bands
and the absolute threshold, the effects of signal masking in human perception play
an important role in signal compression. These will be explained in the following
and their application to psychoacoustic coding will be discussed.

9.3.1 Critical Bands and Absolute Threshold

Critical Bands. Critical bands as investigated by Zwicker are listed in Table 9.1.

Table 9.1 Critical bands as given by Zwicker 1982.

z/Bark | fi/Hz | fu/Hz | Afg/Hz | f./Hz
0 0 100 100 50
1 100 200 100 150
2 200 300 100 250
3 300 400 100 350
4 400 510 110 450
5 510 630 120 570
6 630 770 140 700
7 770 920 150 840
8 920 1080 160 1000
9 1080 1270 190 1170
10 1270 1480 210 1370
11 1480 1720 240 1600
12 1720 2000 280 1850
13 2000 2320 320 2150
14 2320 2700 380 2500
15 2700 3150 450 2900
16 3150 3700 550 3400
17 3700 4400 700 4000
18 4400 5300 900 4800
19 5300 6400 1100 5800
20 6400 7700 1300 7000
21 7700 9500 1800 8500
22 9500 1200 2500 10500
23 | 12000 15500 3500 13500
24 15500

A transformation of the linear frequency scale into a hearing adapted scale is
given by Zwicker {Zwi90] (units of z in Bark)

=13 arctan(O.?GL) + 3.5 arctan(

i )2, (9.1)

z
Bark 7.5kHz
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The individual critical bands have the following bandwidths

Afe=25+75(1+ 1.4(%1{2)2)0'69. (9.2)

Absolute Threshold. The absolute threshold Lr, (threshold in quiet) denotes
the curve of sound pressure level L [Zwi82] versus frequency, which leads to the
perception of a sinusoidal tone. The absolute threshold is given by [Ter79]

Lr, _ 08 e a2 —3, f 4
B —3.64(kHz) 6.5 exp( 0.6(kHZ 3.3)%) + 10 (kHz) : (9.3)

Below the absolute threshold, no perception of signals is possible. Figure 9.5 shows
the absolute threshold versus frequency. Band-splitting in critical bands and the

120

.
g0k bbbt
ol il
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Sound Pressure Level L [dB] —

20 I SR e R ST Py iigatii s
10! 102 103 104 105

f(Hz] —

Figure 9.5 Absolute threshold (threshold in quiet).

absolute threshold allow the calculation of an offset between the signal level and
the absolute threshold for every critical band. This offset is responsible for choosing
appropriate quantization steps per critical band.

9.3.2 DMasking

For data compression the use of sound perception in critical bands and absolute
threshold only is not sufficient for high compression rates. The basis for further
data reduction is the masking effects investigated by Zwicker. For band-limited
noise or a sinusoidal signal, frequency-dependent masking thresholds can be given.

A
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Figure 9.6 Masking threshold of band-limited noise.

These thresholds perform masking of frequency components if these components
are below a masking threshold (see Fig. 9.6). The application of masking for per-
ceptual coding is described in the following.

Calculation of Signal Power in Band i. First, the sound pressure level
within a critical band is calculated. The short-time spectrum X (k) = DFT[z(n)]
is used for calculating the power density spectrum

Sp() = Sple?F) = XR(F) + X} (9.4)
Sp(k) = Xi(k)+X}k) 0<k<N-1 (9.5)

with the help of an N-point FFT. The signal power in band i is calculated by the
sum

Q.
Spi)= D Sp(k) (96)
=0y,
from the lower frequency up to the upper frequency of critical band i. The sound
level pressure in band ¢ is given by Lg(i) = 10log,;.S,(%).

Absolute Threshold. The absolute threshold is set such that a 4 kHz signal
with peak amplitude £1 LSB for a 16 bit representation lies at the lower limit
of the absolute threshold curve. Every masking threshold calculated in individual
critical bands, which lies below the absolute threshold, is set to a value equal to
the absolute threshold in the corresponding band. Since the absolute threshold
within a critical band varies for low and high frequencies, it is necessary to make
use of the mean absolute threshold within a band.

Masking Threshold. The offset between signal level and the masking thres-
hold in critical band i (see Fig. 9.7) is given by [Hel72]

o)

dB

= a(14.5 + 1) + (1 — a)a,, (9.7)



256 9 Data Compression

where « denotes the tonality index and a, is the masking index. The masking

L[4B) 4 o
i I i A
: )
| ]
]
[}
! 1
1 1
] 1
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;o I
/ ) I
! I | +Bandi
| 1 f
fli  fuj

Figure 9.7 Offset between signal level and masking threshold.

index [Kap92] is given by

f f?
y=—2—2. —0. —). :
a 2 05 arctan( 1 kHz) 0.75 arctan(2.56 kHZ2) (9.8)
As an approximation
Qd%) = a(14.5+1) + (1 — a)5.5 (9.9)

can be used [Joh88a,b]. If a tone is masking a noise-like signal (e« = 1), the thres-
hold is set 14.5 + 7 dB below the value of Lg(i). If a noise-like signal is masking a
tone (o = 0), the threshold is set 5.5+ 7 dB below Lg(4). In order to recognize a
tonal or noise-like signal within a certain number of samples, the Spectral Flatness
Measure SFM is estimated. The SFM is defined by the ratio of the geometric to
arithmetic mean value of S,(7) according to

N ek VT
[Hk2:1 Sp(ei%)] ’
- 2wk

N
Krl7§ Zk2=1 Sp(e? V)

SFM = 10log,, il. (9.10)

The SFM is compared with the SFM of a sinusoidal signal (definition SFMmax =
—60dB) and the tonality index is calculated [Joh88a,b] by

SFM )

—_— 1
SFMmax (9.11)

azMIN(

SFM = 0 dB corresponds to a noise-like signal and leads to o = 0, whereas an
SFM = 75 dB gives a tone-like signal (o« = 1). With the sound pressure level Lg(7)
and the offset O(¢) the masking threshold is given by

T(l) — lo[LS(i)—O(i)l/m_ (9'12)
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Masking Across Critical Bands. Masking across critical bands can be car-
ried out with the help of the Bark scale. The masking threshold is of a triangular
form which decreases with S; dB per Bark for the lower slope and with Sy dB per
Bark for the upper slope, depending on the sound pressure level L; and the center
frequency f., in band i (see [Ter79]) according to

S, = 27  dB/Bark (9.13)
S, = 244023y —p2Zs® g ma (9.14)
kHz dB

An approximation of the minimum masking within a critical band can be made
using Fig. 9.8 [Thei88, Sauv90]. Masking at the upper frequency f,, in the critical
band 1 is responsible for masking the quantization noise with approximately 32 dB
using the lower masking threshold that decreases by 27 dB/Bark. The upper slope
has a steepness which depends on sound pressure level. This steepness is lower
than the steepness of the lower slope.

L [dB]
Ls

L-32dB

! Quantization Noise

> f

fii | =i
Bandi

Figure 9.8 Masking within a critical band.

Masking across critical bands is presented in Fig. 9.9. The masking signal in
critical band i—1 is responsible for masking the quantization noise in critical band i
as well as the masking signal in critical band <. This kind of masking across critical
bands further reduces the number of quantization steps within critical bands.

An analytical expression for masking across critical bands [Schr79] is given by
10log,,[B(A)] = 15.81 4+ 7.5(Ai + 0.474) — 17.5[1 + (A7 + 0.474)2]%. {(9.15)

Ai denotes the distance between two critical bands in Bark. Expression (9.15) is
called spreading function. With the help of this spreading function, masking of
critical band i by critical band j can be calculated [Joh88a,b] with abs(i — j) < 25
such that

Sm(i) = Bij - S, (i) (9.16)
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Figure 9.9 Masking across critical bands.

The masking across critical bands can therefore be expressed as a matrix operation
given by

Sm(1) B(0) B(-1) B(-2) B(~24)7 1 Sp(1)
s@ | | BO) B BC1 - B(-23)| | 5,

S ) | : e
Sm(25))  LB(24) B@3) B2 --- BO) ) Ls,@25)

A renewed calculation of the masking threshold with (9.16) leads to the global
masking threshold

T (i) = 10108105 () -0@)/10, (9.18)

Figure 9.10 shows the absolute threshold and the individual masking thresholds
of each masking signal as well as the global masking threshold.

100

L (e8]}

50

Figure 9.10 Masking thresholds for three masking signals.
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For data compression, the following calculations for every critical band 7 have
to be performed.

o Calculation of the signal power S, (1)
(Ls (@) [dB])

e Absolute threshold
(Lr,(7) [dB])

e Calculation of masking thresholds 7'(i)
(L (i) [dB])

e Calculation of global masking thresholds T3, (%)
(L, (7) [dB])

e Calculation of the signal-to-mask ratio

SMR; = Lg(i) — L1, (4). (9.19)

Owing to the signal-to-mask ratio, quantization in each of the critical bands and
a dynamic bit allocation can be performed (see Fig. 9.11).

X4

l—i=
Analysis | Quantization | 1
x(n) Filter and
Bank |x,' Coding | !
£ —»
Tsmr,
sT- |  Signal Power Sp(f)
FFT "[Masking Threshold Tm(i)

Figure 9.11 Calculation of signal-to-mask ratio SMR,, quantization and dynamic bit
allocation.

9.4 ISO-MPEG1 Audio Coding

In this section, the coding method for digital audio signals is described which
is specified in the standard ISO/IEC 11172-3 [ISO92]. The filter banks used for
subband decomposition, the psychoacoustic models, dynamic bit allocation and
coding are discussed. A simplified block diagram of the coder for implementing
layers I and II of the standard is shown in Fig. 9.12. The corresponding decoder
is shown in Fig. 9.13. It uses the information from the ISO-MPEG1 frame and
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Figure 9.12 Simplified block diagram of a ISO-MPEG1 coder.

feeds the decoded subband signals to a synthesis filter bank for reconstructing
the broad-band PCM signal. The complexity of the decoder is, in contrast to the
coder, significantly lower. Prospective improvements of the coding method are
being made entirely for the coder.

De- ;
, [ Synthesis
Xe Mulgﬁléexer o Filter —wo X(N)
Decoding [ XN Bank

Figure 9.13 Simplified block diagram of a ISO-MPEG1 decoder.

9.4.1 Filter Banks

The subband decomposition is done with a Pseudo-QMF filter bank. The theo-
retical background is found in the related literature [Rot83, Mas85, Vai93]. The
Pseudo-QMF filter bank is marked by its low complexity.

The decomposition of the broad-band signal is made into M uniformly spaced
subbands. The subbands are processed further after a sampling rate reduction by a
factor of M. The individual band-pass filters Hy(z) ... Hpr—1(2) are designed using
a prototype low-pass filter H(z) and frequency shifted versions. The frequency
shifting of the prototype with cutoft frequency 7/2M is done by modulating the
impulse response h{n) with a cosine term. The band-pass filters have band-width
m/M. For the synthesis filter bank, corresponding filters Fy(z)... Far—_;(z) give
outputs which are added together resulting in a broad-band PCM signal. The
implementation of an ISO-MPEGI coder is based on M = 32 frequency bands. The
Pseudo-QMF filter bank can be implemented by the combination of a polyphase
filter structure followed by a discrete cosine transform [Rot83, Vai93, Kon94].
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Figure 9.14 Pseudo-QMF filter bank.

]

For increasing the frequency resolution, layer III of the standard decomposes
each of the 32 subbands further into a maximum of 18 uniformly spaced subbands
(see Fig. 9.15). The decomposition is carried out with the help of an overlap-

Xo — 0 =
x(n) Holzh» {32 MocT . IMDCTI—s] 4 320 w| Fo(2)
Xy — 18 e
H, (zx»]{ 32}—MDCT] 1 i [mocT—»{4 32|+ F,(2)
| as —
! I 5 Lo
|__ X3 — 558 — ]
H,, ()] 4 32—MpCT] | ! IMocTL 143251 Fy (2) y(n)
L+ 575 — |

Figure 9.15 Polyphase/MDCT hybrid filter bank.

ped transform of windowed subband samples. The method is based on a modified
discrete cosine transform, also known as the TDAC filter bank (Time Domain
Aliasing Cancellation) and MLT (Modulated Lapped Transform). An exact des-
cription is found in [Pri87, Mal92]. This extended filter bank is denoted as the poly-
phase/MDCT hybrid filter bank [Bra94]. The higher frequency resolution enables
a higher coding gain but has the disadvantage of having a worse time resolution.
This is observed for impulse-like signals. In order to minimize these artifacts, the
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number of subbands per subband can be altered from 18 down to 6. Subband de-
compositions that are matched to the signal can be obtained by specially designed
window functions with overlapping transforms [Ed189].

9.4.2 Psychoacoustic Models

Two psychoacoustic models have been developed for layers I to III of the ISO-
MPEG]1 standard. Both models can be used independently of each other for all
three layers. Psychoacoustic model 1 is used for layers I and II whereas model 2 is
used for layer ITI. Owing to the numerous applications of layers I and I, we will
discuss psychoacoustic model 1 in the following.

Psychoacoustic Model 1. Bit allocation in each of the 32 subbands is carried
out using the signal-to-mask ratio SMR;. This is based on the minimum masking
threshold and the maximum signal level within a subband. In order to calculate
this ratio, the power density spectrum is estimated with the help of a short-time
FFT in parallel with the analysis filter bank. As a consequence, a higher frequency
resolution is obtained for estimating the power density spectrum in contrast to the
frequency resolution of the 32-band analysis filter bank. The signal-to-mask ratio
for every subband is determined as follows:

1. Calculating the power density spectrum of a block of IV samples using FFT.
After windowing a block of N = 512 (N = 1024 for layer II) input samples,
the power density spectrum

N-1 2
1 .y
X (k) = 10log, N E h(n)z(n)e™ ™ 27/N | [4B] (9.20)
n=0

is calculated. After this, the window h(n) is displaced by 384 (12-32) samples
and the next block is processed.

2. Determination of sound pressure level in every subband. The sound pressure
level is derived from the calculated power density spectrum and by calcula-
ting a scaling factor in the corresponding subband as given by

Ls(i) = MAX[X (k), 20 log,o[SC Fna (i) # 32768] — 10]  [dB].  (9.21)

For X (k), the maximum of the spectral lines in a subband is used. The
scaling factor SC'F; for subband 7 is calculated from the absolute value of
the maximum of 12 consecutive subband samples. A nonlinear quantization
to 64 levels is carried out (layer I). For layer II, the sound pressure level is
determined by choosing the largest of the three scaling factors from 3 - 12
subband samples.
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3. Considering the absolute threshold. The absolute threshold LT, (m) is speci-
fied for different sampling rates in {IS092]. The frequency index m is based
on a reduction of N/2 relevant frequencies with the FFT of index k (see Fig.
9.16). The subband index is still <.

T

o g
k=0 k=1 FFT index k k=255

Figure 9.16 Nomenclature of frequency indices.

4. Calculating tonal X;,,(k) or non-tonal X,,,(k) masking components and
determining relevant masking components (for details see [ISO92]). These
masking components are denoted as Xy [2(7)] and Xpm[2(5)]. With the in-
dex j, tonal and non-tonal masking components are labeled. The variable
z(m) is listed for reduced frequency indices m in [ISO92]. It allows a finer
resolution of the 24 critical bands with the frequency group index z.

5. Calculating the individual masking thresholds. For masking thresholds of
tonal and non-tonal masking components X;,[2(7)] and X.[2(7)], the fol-
lowing calculation is performed:

LTum{2(5), 2(m)] = Xim[2()] + @ue [2()] + v4[2(3), 2(m)]  [dB] (9.22)

LTum[2(5), 2(m)] = Xnm[2(5)] + av,.,. [2(7)] + ve[2(4),2(m)] [dB]. (9.23)
The masking index for tonal masking components is given by

o ==1.525-0.275"2(j) —4.5 [dB] (9.24)

Ay,

and the masking index for non-tonal masking components is

@, =—1.525-0.175-2(j) — 0.5 [dB]. (9.25)
The masking function v¢[2(j), z(m)] with distance Az = z(m) — z(j) is given
by
17- (Az+ 1) — (0.4 - X[z(j)] + 6) -3 <Az< -1
(0.4 X[2(j)] + 6) - Az 1 <Az< 0
vp=¢ —17-Az 0 <Az < 1
—(Az=-1)-(17-015- X[z()]) -17 1 <Az< 8
[dB] [Bark].

This masking function v¢[z(j), z(mn)] describes the masking of the frequency
index z(m) by the masking component z(J).
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6. Calculating the global masking threshold. For frequency index m, the glo-
bal masking threshold is calculated as the sum of all contributing masking
components according to

LT,(m) = 1010g10[10LT"(m)/10

Tm
_|_ Z IOLTtm [Z(j)vz(m)]/lo
ji=1

Rm
s IOLTnm[Z(J’).Z(m)]/IO} _ (9.26)
i=1

The total number of tonal and non-tonal masking components are denoted
as Ty, and R,, respectively. For a given subband 7, only masking components
that lie in the range -8 to +3 Bark will be considered. Masking components
outside this range are neglected.

7. Determination of the minimum masking threshold in every subband:
LT min(i) = MIN[LTy(m)] [dB]. {9.27)

Several masking thresholds LT,(m) can occur in a subband as long as m lies
within the subband :.

8. Calculation of the signal-to-mask ratio SMR; in every subband:

SMR; = Ls(i) — LTmin(i) [dB. (9.28)

The signal-to-mask ratio determines the dynamic range that has to be quan-
tized in the particular subband so that the level of quantization noise lies below
the masking threshold. The signal-to-mask ratio is the basis for the bit allocation
procedure for quantizing the subband signals.

9.4.3 Dynamic Bit Allocation and Coding

Dynamic Bit Allocation. Dynamic bit allocation is used to determine the num-
ber of bits that are necessary for the individual subbands so that a transparent
perception is possible. The minimum number of bits in subband i can be determi-
ned from the difference between scaling factor SC'F; and the absolute threshold
LT, (%) as by = SCF; — LT,(i). With this quantization noise remains under the
masking threshold. Masking across critical bands is used for the implementation
of the ISO-MPEG1 coding method.
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For a given transmission rate, the maximum possible number of bits B,, for
coding subband signals and scaling factors is calculated as

32
B, = Z b; + SCF; ' + additional information. (9.29)

=1

The bit allocation is performed within an allocation frame consisting of 12 subband
samples (384 = 1232 PCM samples) for layer I and 36 subband samples (1152 =
36 - 32 PCM samples) for layer II.

The dynamic bit allocation for the subband signals is carried out as an iterative
procedure. At the beginning, the number of bits per subband is set to zero. First,
the mask-to-noise ratio

MNR; = SNR; — SMR; (9.30)

is determined for every subband. The signal-to-mask ratio SMR,; is the result of
the psychoacoustic model. The signal-to-noise ratio SNR; is defined by a table in
[IS0O92], in which for every number of bits a corresponding signal-to-noise ratio is
specified. The number of bits must be increased as long as the mask-to-noise ratio
MNR is less than zero.

The iterative bit allocation is performed by the following steps:

1. Determination of the minimum MNR; of all subbands.

2. Increasing the number of bits of these subbands on to the next stage of the
MPEG]1 standard. Allocation of 6 bits for the scaling factor of the MPEG1
standard when the number of bits is increased for the first time.

3. New calculation of MNR,; in this subband.

4. Calculation of the number of bits for all subbands and scaliné; factors and
comparison with the maximum number B,,. If the number of bits is smaller
than the maximum number, the iteration starts again with step 1.

Quantization and Coding of Subband Signals. The quantization of the
subband signals is done with the allocated bits for the corresponding subband.
The 12 (36) subband samples are divided by the corresponding scaling factor and
then linearly quantized and coded (for details see [ISO92]). This is followed by a
frame packing. In the decoder, the procedure is reversed. The decoded subband
signals with different word-lengths are reconstructed to a broad-band PCM signal
with a synthesis filter bank (see Fig. 9.13).
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